» Articles » PMID: 21059934

Tetrameric Organization of Vertebrate Centromeric Nucleosomes

Overview
Specialty Science
Date 2010 Nov 10
PMID 21059934
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Mitosis ensures equal genome segregation in the eukaryotic lineage. This process is facilitated by microtubule attachment to each chromosome via its centromere. In centromeres, canonical histone H3 is replaced in nucleosomes by a centromere-specific histone H3 variant (CENH3), providing the unique epigenetic signature required for microtubule binding. Due to recent findings of alternative CENH3 nucleosomal forms in invertebrate centromeres, it has been debated whether the classical octameric nucleosomal arrangement of two copies of CENH3, H4, H2A, and H2B forms the basis of the vertebrate centromere. To address this question directly, we examined CENH3 [centromere protein A (CENP-A)] nucleosomal organization in human cells, using a combination of nucleosome component analysis, atomic force microscopy (AFM), and immunoelectron microscopy (immuno-EM). We report that native CENP-A nucleosomes contain centromeric alpha satellite DNA, have equimolar amounts of H2A, H2B, CENP-A, and H4, and bind kinetochore proteins. These nucleosomes, when measured by AFM, yield one-half the dimensions of canonical octameric nucleosomes. Using immuno-EM, we find that one copy of CENP-A, H2A, H2B, and H4 coexist in CENP-A nucleosomes, in which internal C-terminal domains are accessible. Our observations indicate that CENP-A nucleosomes are organized as asymmetric heterotypic tetramers, rather than canonical octamers. Such altered nucleosomes form a chromatin fiber with distinct folding characteristics, which we utilize to discriminate tetramers directly within bulk chromatin. We discuss implications of our observations in the context of universal epigenetic and mechanical requirements for functional centromeres.

Citing Articles

High-resolution analysis of human centromeric chromatin.

Melters D, Bui M, Rakshit T, Grigoryev S, Sturgill D, Dalal Y Life Sci Alliance. 2025; 8(4.

PMID: 39848706 PMC: 11757159. DOI: 10.26508/lsa.202402819.


Native and tagged CENP-A histones are functionally inequivalent.

Bui M, Baek S, Bentahar R, Melters D, Dalal Y Epigenetics Chromatin. 2024; 17(1):19.

PMID: 38825690 PMC: 11145777. DOI: 10.1186/s13072-024-00543-9.


DNA satellite and chromatin organization at mouse centromeres and pericentromeres.

Packiaraj J, Thakur J Genome Biol. 2024; 25(1):52.

PMID: 38378611 PMC: 10880262. DOI: 10.1186/s13059-024-03184-z.


Single molecule analysis of CENP-A chromatin by high-speed atomic force microscopy.

Melters D, Neuman K, Bentahar R, Rakshit T, Dalal Y Elife. 2023; 12.

PMID: 37728600 PMC: 10511241. DOI: 10.7554/eLife.86709.


Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin.

Morrison O, Thakur J Int J Mol Sci. 2021; 22(13).

PMID: 34203193 PMC: 8268097. DOI: 10.3390/ijms22136922.


References
1.
Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P . Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol. 2004; 24(15):6620-30. PMC: 444843. DOI: 10.1128/MCB.24.15.6620-6630.2004. View

2.
Foltz D, Jansen L, Bailey A, Yates 3rd J, Bassett E, Wood S . Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell. 2009; 137(3):472-84. PMC: 2747366. DOI: 10.1016/j.cell.2009.02.039. View

3.
Santaguida S, Musacchio A . The life and miracles of kinetochores. EMBO J. 2009; 28(17):2511-31. PMC: 2722247. DOI: 10.1038/emboj.2009.173. View

4.
Perpelescu M, Nozaki N, Obuse C, Yang H, Yoda K . Active establishment of centromeric CENP-A chromatin by RSF complex. J Cell Biol. 2009; 185(3):397-407. PMC: 2700388. DOI: 10.1083/jcb.200903088. View

5.
Woodcock C, Horowitz R . Electron microscopy of chromatin. Methods. 1997; 12(1):84-95. DOI: 10.1006/meth.1997.0450. View