» Articles » PMID: 21037572

Ultrasensitive Detection and Characterization of Biomolecules Using Superchiral Fields

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2010 Nov 2
PMID 21037572
Citations 127
Authors
Affiliations
Soon will be listed here.
Abstract

The spectroscopic analysis of large biomolecules is important in applications such as biomedical diagnostics and pathogen detection, and spectroscopic techniques can detect such molecules at the nanogram level or lower. However, spectroscopic techniques have not been able to probe the structure of large biomolecules with similar levels of sensitivity. Here, we show that superchiral electromagnetic fields, generated by the optical excitation of plasmonic planar chiral metamaterials, are highly sensitive probes of chiral supramolecular structure. The differences in the effective refractive indices of chiral samples exposed to left- and right-handed superchiral fields are found to be up to 10(6) times greater than those observed in optical polarimetry measurements, thus allowing picogram quantities of adsorbed molecules to be characterized. The largest differences are observed for biomolecules that have chiral planar sheets, such as proteins with high β-sheet content, which suggests that this approach could form the basis for assaying technologies capable of detecting amyloid diseases and certain types of viruses.

Citing Articles

Plasmonic Chirality Meets Reactivity: Challenges and Opportunities.

Brissaud C, Jain S, Henrotte O, Pouget E, Pauly M, Naldoni A J Phys Chem C Nanomater Interfaces. 2025; 129(7):3361-3373.

PMID: 40008194 PMC: 11849436. DOI: 10.1021/acs.jpcc.4c08454.


Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Hou Y, Yang X, Hu S, Lin Q, Zhou J, Peng J Nano Lett. 2025; 25(3):1158-1164.

PMID: 39804126 PMC: 11760171. DOI: 10.1021/acs.nanolett.4c05668.


Coupling-enabled chirality in terahertz metasurfaces.

Yin S, Chen Y, Quan B, Liu S, Huang W, Liu M Nanophotonics. 2024; 12(7):1317-1326.

PMID: 39677586 PMC: 11636346. DOI: 10.1515/nanoph-2023-0019.


Molecular chirality detection using plasmonic and dielectric nanoparticles.

Kim T, Park Q Nanophotonics. 2024; 11(9):1897-1904.

PMID: 39633953 PMC: 11502060. DOI: 10.1515/nanoph-2021-0649.


Selective Plasmonic Responses of Chiral Metamirrors.

Li C, Liao Y, Bikbaev R, Yang J, Chen L, Maksimov D Nanomaterials (Basel). 2024; 14(21).

PMID: 39513785 PMC: 11547482. DOI: 10.3390/nano14211705.


References
1.
Zhang S, Park Y, Li J, Lu X, Zhang W, Zhang X . Negative refractive index in chiral metamaterials. Phys Rev Lett. 2009; 102(2):023901. DOI: 10.1103/PhysRevLett.102.023901. View

2.
Berman H, Henrick K, Nakamura H . Announcing the worldwide Protein Data Bank. Nat Struct Biol. 2003; 10(12):980. DOI: 10.1038/nsb1203-980. View

3.
Hall W, Anker J, Lin Y, Modica J, Mrksich M, Van Duyne R . A calcium-modulated plasmonic switch. J Am Chem Soc. 2008; 130(18):5836-7. PMC: 2723789. DOI: 10.1021/ja7109037. View

4.
Baev A, Samoc M, Prasad P, Krykunov M, Autschbach J . A quantum chemical approach to the design of chiral negative index materials. Opt Express. 2009; 15(9):5730-41. DOI: 10.1364/oe.15.005730. View

5.
Bovet N, McMillan N, Gadegaard N, Kadodwala M . Supramolecular assembly facilitating adsorbate-induced chiral electronic states in a metal surface. J Phys Chem B. 2007; 111(33):10005-11. DOI: 10.1021/jp074056s. View