Yoshinaga T, Zhang Z, Iida A
JASA Express Lett. 2024; 4(3).
PMID: 38426891
PMC: 10926109.
DOI: 10.1121/10.0025124.
Deng J, Erath B, Zanartu M, Peterson S
Biomech Model Mechanobiol. 2023; 22(6):1873-1889.
PMID: 37428270
PMC: 10795467.
DOI: 10.1007/s10237-023-01740-3.
Sundstrom E, Oren L, de Luzan C, Gutmark E, Khosla S
J Voice. 2022; .
PMID: 36180275
PMC: 10040475.
DOI: 10.1016/j.jvoice.2022.08.030.
Zhang Y, Jiang W, Sun L, Wang J, Zheng X, Xue Q
J Biomech Eng. 2022; 144(9).
PMID: 35171218
PMC: 8990722.
DOI: 10.1115/1.4053862.
Motie-Shirazi M, Zanartu M, Peterson S, Erath B
J Acoust Soc Am. 2021; 150(2):1332.
PMID: 34470335
PMC: 8387087.
DOI: 10.1121/10.0005882.
A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production.
Zhang Y, Zheng X, Xue Q
Appl Sci (Basel). 2021; 10(2).
PMID: 34306737
PMC: 8299989.
DOI: 10.3390/app10020705.
A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
Kolahdouz E, Bhalla A, Scotten L, Craven B, Griffith B
J Comput Phys. 2021; 443.
PMID: 34149063
PMC: 8211094.
DOI: 10.1016/j.jcp.2021.110442.
A reduced-order flow model for vocal fold vibration: from idealized to subject-specific models.
Chen Y, Li Z, Chang S, Rousseau B, Luo H
J Fluids Struct. 2020; 94.
PMID: 32210520
PMC: 7093056.
DOI: 10.1016/j.jfluidstructs.2020.102940.
High-fidelity continuum modeling predicts avian voiced sound production.
Jiang W, Rasmussen J, Xue Q, Ding M, Zheng X, Elemans C
Proc Natl Acad Sci U S A. 2020; 117(9):4718-4723.
PMID: 32054784
PMC: 7060737.
DOI: 10.1073/pnas.1922147117.
Influence of vocal fold cover layer thickness on its vibratory dynamics during voice production.
Jiang W, Zheng X, Xue Q
J Acoust Soc Am. 2019; 146(1):369.
PMID: 31370576
PMC: 6656577.
DOI: 10.1121/1.5116567.
An acoustic source model for asymmetric intraglottal flow with application to reduced-order models of the vocal folds.
Erath B, Peterson S, Weiland K, Plesniak M, Zanartu M
PLoS One. 2019; 14(7):e0219914.
PMID: 31344084
PMC: 6657872.
DOI: 10.1371/journal.pone.0219914.
Effect of Longitudinal Variation of Vocal Fold Inner Layer Thickness on Fluid-Structure Interaction During Voice Production.
Jiang W, Xue Q, Zheng X
J Biomech Eng. 2018; 140(12).
PMID: 30098145
PMC: 6993787.
DOI: 10.1115/1.4041045.
Vocal fold contact patterns based on normal modes of vibration.
Smith S, Titze I
J Biomech. 2018; 73:177-184.
PMID: 29680310
PMC: 5935250.
DOI: 10.1016/j.jbiomech.2018.04.011.
Computational Modeling of Fluid-Structure-Acoustics Interaction during Voice Production.
Jiang W, Zheng X, Xue Q
Front Bioeng Biotechnol. 2017; 5:7.
PMID: 28243588
PMC: 5304452.
DOI: 10.3389/fbioe.2017.00007.
The effect of vocal fold vertical stiffness variation on voice production.
Geng B, Xue Q, Zheng X
J Acoust Soc Am. 2016; 140(4):2856.
PMID: 27794296
PMC: 5848868.
DOI: 10.1121/1.4964508.
Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.
Titze I, Riede T, Mau T
PLoS Comput Biol. 2016; 12(6):e1004907.
PMID: 27309543
PMC: 4911068.
DOI: 10.1371/journal.pcbi.1004907.
The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
Xue Q, Zheng X
J Voice. 2016; 31(3):275-281.
PMID: 27178452
PMC: 5104676.
DOI: 10.1016/j.jvoice.2016.04.006.
A New MRI-Based Model of Heart Function with Coupled Hemodynamics and Application to Normal and Diseased Canine Left Ventricles.
Choi Y, Constantino J, Vedula V, Trayanova N, Mittal R
Front Bioeng Biotechnol. 2015; 3:140.
PMID: 26442254
PMC: 4585083.
DOI: 10.3389/fbioe.2015.00140.
Effect of resection depth of early glottic cancer on vocal outcome: an optimized finite element simulation.
Mau T, Palaparthi A, Riede T, Titze I
Laryngoscope. 2015; 125(8):1892-9.
PMID: 26010240
PMC: 4512909.
DOI: 10.1002/lary.25267.
Validation of a flow-structure-interaction computation model of phonation.
Bhattacharya P, Siegmund T
J Fluids Struct. 2014; 48:169-187.
PMID: 25125796
PMC: 4128418.
DOI: 10.1016/j.jfluidstructs.2014.02.017.