» Articles » PMID: 20980619

Finding the Cell Center by a Balance of Dynein and Myosin Pulling and Microtubule Pushing: a Computational Study

Overview
Journal Mol Biol Cell
Date 2010 Oct 29
PMID 20980619
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces-dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles-is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility.

Citing Articles

Relaxation and Noise-Driven Oscillations in a Model of Mitotic Spindle Dynamics.

Hargreaves D, Woolner S, Jensen O Bull Math Biol. 2024; 86(9):113.

PMID: 39096399 PMC: 11297845. DOI: 10.1007/s11538-024-01341-w.


The positioning mechanics of microtubule asters in embryo explants.

de-Carvalho J, Tlili S, Saunders T, Telley I Elife. 2024; 12.

PMID: 38426416 PMC: 10911390. DOI: 10.7554/eLife.90541.


Autoinhibitory mechanism controls binding of centrosomin motif 1 to γ-tubulin ring complex.

Yang S, Au F, Li G, Lin J, Li X, Qi R J Cell Biol. 2023; 222(7).

PMID: 37213089 PMC: 10202828. DOI: 10.1083/jcb.202007101.


Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation.

Carmona B, Marinho H, Matos C, Nolasco S, Soares H Biology (Basel). 2023; 12(4).

PMID: 37106761 PMC: 10136095. DOI: 10.3390/biology12040561.


Actin network architecture can ensure robust centering or sensitive decentering of the centrosome.

Yamamoto S, Gaillard J, Vianay B, Guerin C, Orhant-Prioux M, Blanchoin L EMBO J. 2022; 41(20):e111631.

PMID: 35916262 PMC: 9574749. DOI: 10.15252/embj.2022111631.


References
1.
Vogel S, Pavin N, Maghelli N, Julicher F, Tolic-Norrelykke I . Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol. 2009; 7(4):e1000087. PMC: 2671556. DOI: 10.1371/journal.pbio.1000087. View

2.
Koonce M, Khodjakov A . Dynamic microtubules in Dictyostelium. J Muscle Res Cell Motil. 2003; 23(7-8):613-9. DOI: 10.1023/a:1024446821701. View

3.
Tolic-Norrelykke I, Sacconi L, Thon G, Pavone F . Positioning and elongation of the fission yeast spindle by microtubule-based pushing. Curr Biol. 2004; 14(13):1181-6. DOI: 10.1016/j.cub.2004.06.029. View

4.
Wada M, Suetsugu N . Plant organelle positioning. Curr Opin Plant Biol. 2004; 7(6):626-31. DOI: 10.1016/j.pbi.2004.09.005. View

5.
Burakov A, Nadezhdina E, Slepchenko B, Rodionov V . Centrosome positioning in interphase cells. J Cell Biol. 2003; 162(6):963-9. PMC: 2172857. DOI: 10.1083/jcb.200305082. View