» Articles » PMID: 20972533

Metformin Regulates the Incretin Receptor Axis Via a Pathway Dependent on Peroxisome Proliferator-activated Receptor-α in Mice

Overview
Journal Diabetologia
Specialty Endocrinology
Date 2010 Oct 26
PMID 20972533
Citations 107
Authors
Affiliations
Soon will be listed here.
Abstract

Aims/hypothesis: Metformin is widely used for the treatment of type 2 diabetes. Although it reduces hepatic glucose production, clinical studies show that metformin may reduce plasma dipeptidyl peptidase-4 activity and increase circulating levels of glucagon-like peptide 1 (GLP-1). We examined whether metformin exerts glucoregulatory actions via modulation of the incretin axis.

Methods: Metformin action was assessed in Glp1r(-/-), Gipr(-/-), Glp1r:Gipr(-/-), Pparα (also known as Ppara)(-/-) and hyperglycaemic obese wild-type mice with or without the GLP-1 receptor (GLP1R) antagonist exendin(9-39). Experimental endpoints included glucose tolerance, plasma insulin levels, gastric emptying and food intake. Incretin receptor expression was assessed in isolated islets from metformin-treated wild-type and Pparα(-/-) mice, and in INS-1 832/3 beta cells with or without peroxisome proliferator-activated receptor (PPAR)-α or AMP-activated protein kinase (AMPK) antagonists.

Results: In wild-type mice, metformin acutely increased plasma levels of GLP-1, but not those of gastric inhibitory polypeptide or peptide YY; it also improved oral glucose tolerance and reduced gastric emptying. Metformin significantly improved oral glucose tolerance despite loss of incretin action in Glp1r(-/-), Gipr(-/-) and Glp1r(-/-) :Gipr(-/-) mice, and in wild-type mice fed a high-fat diet and treated with exendin(9-39). Levels of mRNA transcripts for Glp1r, Gipr and Pparα were significantly increased in islets from metformin-treated mice. Metformin directly increased Glp1r expression in INS-1 beta cells via a PPAR-α-dependent, AMPK-independent mechanism. Metformin failed to induce incretin receptor gene expression in islets from Pparα(-/-) mice.

Conclusions/interpretation: As metformin modulates multiple components of the incretin axis, and enhances expression of the Glp1r and related insulinotropic islet receptors through a mechanism requiring PPAR-α, metformin may be mechanistically well suited for combination with incretin-based therapies.

Citing Articles

Decrypting the Possible Mechanistic Role of Fenofibrate in Alzheimer's Disease and Type 2 Diabetes: The Truth and Mystery.

Alsaleem M, Al-Kuraishy H, Al-Gareeb A, Abdel-Fattah M, Alrouji M, Al-Harchan N J Cell Mol Med. 2025; 29(5):e70378.

PMID: 40040308 PMC: 11880132. DOI: 10.1111/jcmm.70378.


The Gut Microbiota-Related Antihyperglycemic Effect of Metformin.

Szymczak-Pajor I, Drzewoski J, Kozlowska M, Krekora J, Sliwinska A Pharmaceuticals (Basel). 2025; 18(1).

PMID: 39861118 PMC: 11768994. DOI: 10.3390/ph18010055.


Metformin Improves Glycemic Control and Postprandial Metabolism and Enhances Postprandial Glucagon-Like Peptide 1 Secretion in Patients With Type 2 Diabetes and Heart Failure: A Randomized, Double-Blind, Placebo-Controlled Trial.

Melenovsky V, Hoskova E, Velebova K, Veleba J, Borlaug B, Benes J Clin Diabetes. 2025; 43(1):23-32.

PMID: 39829685 PMC: 11739370. DOI: 10.2337/cd24-0003.


Clinical implications and pharmacological considerations of glycemic variability in patients with type 2 diabetes mellitus.

Howsawi A, Alem M Sci Rep. 2024; 14(1):24062.

PMID: 39402124 PMC: 11473953. DOI: 10.1038/s41598-024-74535-w.


Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies.

Marroncini G, Naldi L, Martinelli S, Amedei A Biomedicines. 2024; 12(7).

PMID: 39061972 PMC: 11273695. DOI: 10.3390/biomedicines12071398.


References
1.
Kefas B, Cai Y, Kerckhofs K, Ling Z, Martens G, Heimberg H . Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs their glucose responsiveness and can lead to apoptosis. Biochem Pharmacol. 2004; 68(3):409-16. DOI: 10.1016/j.bcp.2004.04.003. View

2.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J . Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001; 108(8):1167-74. PMC: 209533. DOI: 10.1172/JCI13505. View

3.
PEDERSON R, Satkunarajah M, McIntosh C, Scrocchi L, Flamez D, Schuit F . Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor -/- mice. Diabetes. 1998; 47(7):1046-52. DOI: 10.2337/diabetes.47.7.1046. View

4.
Cuthbertson J, Patterson S, OHarte F, Bell P . Investigation of the effect of oral metformin on dipeptidylpeptidase-4 (DPP-4) activity in Type 2 diabetes. Diabet Med. 2009; 26(6):649-54. DOI: 10.1111/j.1464-5491.2009.02748.x. View

5.
Yasuda N, Inoue T, Nagakura T, Yamazaki K, Kira K, Saeki T . Enhanced secretion of glucagon-like peptide 1 by biguanide compounds. Biochem Biophys Res Commun. 2002; 298(5):779-84. DOI: 10.1016/s0006-291x(02)02565-2. View