» Articles » PMID: 20972370

Deleterious Effects of Reactive Metabolites

Overview
Publisher Wiley
Date 2010 Oct 26
PMID 20972370
Citations 52
Authors
Affiliations
Soon will be listed here.
Abstract

A number of drugs have been withdrawn from the market or severely restricted in their use because of unexpected toxicities that become apparent only after the launch of new drug entities. Circumstantial evidence suggests that, in most cases, reactive metabolites are responsible for these unexpected toxicities. In this review, a general overview of the types of reactive metabolites and the consequences of their formation are presented. The current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these procedures will be discussed. Reasonable reasons for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive-metabolite assessments when nominating drug candidates for development. This will, in turn, help us to design and bring safer drugs to the market.

Citing Articles

Salubrious effects of proanthocyanidins on behavioral phenotypes and DNA repair deficiency in the BTBR mouse model of autism.

Alhusain A, Mahmoud M, Alhamami H, Ebrahim Alobid S, Ansari M, Ahmad S Saudi Pharm J. 2024; 32(11):102187.

PMID: 39493830 PMC: 11530837. DOI: 10.1016/j.jsps.2024.102187.


Arylacetamide deacetylase regulates hepatic iron homeostasis to protect against carbon tetrachloride-induced ferroptosis.

Shinohara S, Uchijima S, Hirosawa K, Nagaoka M, Nakano M, Nakajima M Arch Toxicol. 2024; 98(12):4059-4075.

PMID: 39367970 DOI: 10.1007/s00204-024-03873-5.


Improved Detection of Drug-Induced Liver Injury by Integrating Predicted and Data.

Seal S, Williams D, Hosseini-Gerami L, Mahale M, Carpenter A, Spjuth O Chem Res Toxicol. 2024; 37(8):1290-1305.

PMID: 38981058 PMC: 11337212. DOI: 10.1021/acs.chemrestox.4c00015.


Cyprocide selectively kills nematodes via cytochrome P450 bioactivation.

Knox J, Burns A, Cooke B, Cammalleri S, Kitner M, Ching J Nat Commun. 2024; 15(1):5529.

PMID: 38956039 PMC: 11219838. DOI: 10.1038/s41467-024-49738-4.


Improved Detection of Drug-Induced Liver Injury by Integrating Predicted and Data.

Seal S, Williams D, Hosseini-Gerami L, Mahale M, Carpenter A, Spjuth O bioRxiv. 2024; .

PMID: 38895462 PMC: 11185581. DOI: 10.1101/2024.01.10.575128.


References
1.
Turner S, Wijnhoven S, Tinwell H, Lashford L, RAFFERTY J, Ashby J . Assays to predict the genotoxicity of the chromosomal mutagen etoposide -- focussing on the best assay. Mutat Res. 2001; 493(1-2):139-47. DOI: 10.1016/s1383-5718(01)00170-x. View

2.
Wells P, McCallum G, Chen C, Henderson J, Lee C, Perstin J . Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci. 2009; 108(1):4-18. DOI: 10.1093/toxsci/kfn263. View

3.
Siraki A, Deterding L, Bonini M, Jiang J, Ehrenshaft M, Tomer K . Procainamide, but not N-acetylprocainamide, induces protein free radical formation on myeloperoxidase: a potential mechanism of agranulocytosis. Chem Res Toxicol. 2008; 21(5):1143-53. PMC: 2766841. DOI: 10.1021/tx700415b. View

4.
Ikehata K, Duzhak T, Galeva N, Ji T, Koen Y, Hanzlik R . Protein targets of reactive metabolites of thiobenzamide in rat liver in vivo. Chem Res Toxicol. 2008; 21(7):1432-42. PMC: 2493440. DOI: 10.1021/tx800093k. View

5.
Naisbitt D, Williams D, ONeill P, Maggs J, Willock D, Pirmohamed M . Metabolism-dependent neutrophil cytotoxicity of amodiaquine: A comparison with pyronaridine and related antimalarial drugs. Chem Res Toxicol. 1998; 11(12):1586-95. DOI: 10.1021/tx980148k. View