» Articles » PMID: 20889496

Chembench: a Cheminformatics Workbench

Overview
Journal Bioinformatics
Specialty Biology
Date 2010 Oct 5
PMID 20889496
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Advances in the field of cheminformatics have been hindered by a lack of freely available tools. We have created Chembench, a publicly available cheminformatics portal for analyzing experimental chemical structure-activity data. Chembench provides a broad range of tools for data visualization and embeds a rigorous workflow for creating and validating predictive Quantitative Structure-Activity Relationship models and using them for virtual screening of chemical libraries to prioritize the compound selection for drug discovery and/or chemical safety assessment.

Availability: Freely accessible at: http://chembench.mml.unc.edu

Contact: alex_tropsha@unc.edu

Citing Articles

Graph-Based Feature Selection Approach for Molecular Activity Prediction.

Cerruela-Garcia G, Cuevas-Munoz J, Garcia-Pedrajas N J Chem Inf Model. 2022; 62(7):1618-1632.

PMID: 35315648 PMC: 9006223. DOI: 10.1021/acs.jcim.1c01578.


Web-Based Quantitative Structure-Activity Relationship Resources Facilitate Effective Drug Discovery.

Wang Y, Li J, Shi X, Wang Z, Hao G, Yang G Top Curr Chem (Cham). 2021; 379(6):37.

PMID: 34554348 DOI: 10.1007/s41061-021-00349-3.


Towards reproducible computational drug discovery.

Schaduangrat N, Lampa S, Simeon S, Gleeson M, Spjuth O, Nantasenamat C J Cheminform. 2021; 12(1):9.

PMID: 33430992 PMC: 6988305. DOI: 10.1186/s13321-020-0408-x.


A Novel Small-Molecule Inhibitor of Endosomal TLRs Reduces Inflammation and Alleviates Autoimmune Disease Symptoms in Murine Models.

Patra M, Achek A, Kim G, Panneerselvam S, Shin H, Baek W Cells. 2020; 9(7).

PMID: 32660060 PMC: 7407930. DOI: 10.3390/cells9071648.


Analysis of model PM-induced inflammation and cytotoxicity by the combination of a virtual carbon nanoparticle library and computational modeling.

Liu G, Yan X, Sedykh A, Pan X, Zhao X, Yan B Ecotoxicol Environ Saf. 2020; 191:110216.

PMID: 31972454 PMC: 7018436. DOI: 10.1016/j.ecoenv.2020.110216.


References
1.
Zhang L, Zhu H, Oprea T, Golbraikh A, Tropsha A . QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm Res. 2008; 25(8):1902-14. DOI: 10.1007/s11095-008-9609-0. View

2.
Fourches D, Muratov E, Tropsha A . Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010; 50(7):1189-204. PMC: 2989419. DOI: 10.1021/ci100176x. View

3.
Austin C, Brady L, Insel T, Collins F . NIH Molecular Libraries Initiative. Science. 2004; 306(5699):1138-9. DOI: 10.1126/science.1105511. View

4.
Tropsha A . Best Practices for QSAR Model Development, Validation, and Exploitation. Mol Inform. 2016; 29(6-7):476-88. DOI: 10.1002/minf.201000061. View

5.
Brown F . Editorial opinion: chemoinformatics - a ten year update. Curr Opin Drug Discov Devel. 2005; 8(3):298-302. View