» Articles » PMID: 20882597

An Injectable Composite Material Containing Bone Morphogenetic Protein-2 Shortens the Period of Distraction Osteogenesis in Vivo

Overview
Journal J Orthop Res
Publisher Wiley
Specialty Orthopedics
Date 2010 Oct 1
PMID 20882597
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

To investigate new methods that can decrease the duration of bone transport (BT) distraction osteogenesis, we injected composite materials containing recombinant human bone morphogenetic protein-2 (BMP-2) and induced the generation of a callus bridge by rapid segmental transport (4 mm/day) in a rabbit bone defect model. The composite materials consisted of BMP-2 (0, 30, or 100 µg), β-tricalcium phosphate powder (βTCP, 100 mg/animal; particle size, <100 µm), and polyethylene glycol (PEG; 40 mg/animal). A paste of equivalent composition was percutaneously injected at the lengthening and the docking sites after surgery and after BT, respectively. The radiographic, mechanical, and histological examinations 12 weeks post-operative revealed that the generation of bridging callus in the presence and in the absence of BMP-2 was significantly different. The callus mass in the bone defect region was adequately and consistently developed in the presence of 100 µg of BMP (administered for 6 weeks), and the bones were consolidated in 12 weeks. Such an adequate callus formation was not observed in the control animals without BMP-2 treatment. The result of this experimental study suggests the potential application of BMP-2 in accelerating callus formation and in enabling rapid bone transporting, thereby shortening the treatment period for the repair of diaphyseal bone defects by distraction osteogenesis.

Citing Articles

An osteoinductive and biodegradable intramedullary implant accelerates bone healing and mitigates complications of bone transport in male rats.

Lin S, Maekawa H, Moeinzadeh S, Lui E, Alizadeh H, Li J Nat Commun. 2023; 14(1):4455.

PMID: 37488113 PMC: 10366099. DOI: 10.1038/s41467-023-40149-5.


Overexpression of Bone Morphogenetic Protein-1 Promotes Osteogenesis of Bone Marrow Mesenchymal Stem Cells In Vitro.

Su Z, He L, Shang H, Dai T, Xu F, Zhao J Med Sci Monit. 2020; 26:e920122.

PMID: 32084123 PMC: 7047925. DOI: 10.12659/MSM.920122.


Effect of Single Injection of Recombinant Human Bone Morphogenetic Protein-2-Loaded Artificial Collagen-Like Peptide in a Mouse Segmental Bone Transport Model.

Tazawa R, Minehara H, Matsuura T, Kawamura T, Uchida K, Inoue G Biomed Res Int. 2020; 2019:1014594.

PMID: 31950029 PMC: 6948306. DOI: 10.1155/2019/1014594.


An Update on Midface Advancement Using Le Fort II and III Distraction Osteogenesis.

Tahiri Y, Taylor J Semin Plast Surg. 2014; 28(4):184-92.

PMID: 25383053 PMC: 4219913. DOI: 10.1055/s-0034-1390171.


Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres.

Chou J, Hao J, Kuroda S, Ben-Nissan B, Milthopre B, Otsuka M J Tissue Eng. 2014; 5:2041731414523441.

PMID: 24808939 PMC: 4012694. DOI: 10.1177/2041731414523441.