» Articles » PMID: 20879221

Spatial Decision Forests for MS Lesion Segmentation in Multi-channel MR Images

Overview
Publisher Springer
Date 2010 Oct 1
PMID 20879221
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

A new algorithm is presented for the automatic segmentation of Multiple Sclerosis (MS) lesions in 3D MR images. It builds on the discriminative random decision forest framework to provide a voxel-wise probabilistic classification of the volume. Our method uses multi-channel MIR intensities (T1, T2, Flair), spatial prior and long-range comparisons with 3D regions to discriminate lesions. A symmetry feature is introduced accounting for the fact that some MS lesions tend to develop in an asymmetric way. Quantitative evaluation of the data is carried out on publicly available labeled cases from the MS Lesion Segmentation Challenge 2008 dataset and demonstrates improved results over the state of the art.

Citing Articles

Semantic Segmentation of Extraocular Muscles on Computed Tomography Images Using Convolutional Neural Networks.

Shanker R, Zhang M, Ginat D Diagnostics (Basel). 2022; 12(7).

PMID: 35885459 PMC: 9325103. DOI: 10.3390/diagnostics12071553.


Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review.

Gryska E, Schneiderman J, Bjorkman-Burtscher I, Heckemann R BMJ Open. 2021; 11(1):e042660.

PMID: 33514580 PMC: 7849889. DOI: 10.1136/bmjopen-2020-042660.


Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis.

Carass A, Roy S, Gherman A, Reinhold J, Jesson A, Arbel T Sci Rep. 2020; 10(1):8242.

PMID: 32427874 PMC: 7237671. DOI: 10.1038/s41598-020-64803-w.


Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

Vidyaratne L, Alam M, Shboul Z, Iftekharuddin K Proc SPIE Int Soc Opt Eng. 2018; 2018.

PMID: 29551853 PMC: 5851487. DOI: 10.1117/12.2292930.


Medical Imaging Lesion Detection Based on Unified Gravitational Fuzzy Clustering.

Vianney Kinani J, Rosales Silva A, Funes F, Mujica Vargas D, Diaz E, Arellano A J Healthc Eng. 2017; 2017:8536206.

PMID: 29158887 PMC: 5660817. DOI: 10.1155/2017/8536206.