» Articles » PMID: 20871606

Spin Seebeck Insulator

Overview
Journal Nat Mater
Date 2010 Sep 28
PMID 20871606
Citations 83
Authors
Affiliations
Soon will be listed here.
Abstract

Thermoelectric generation is an essential function in future energy-saving technologies. However, it has so far been an exclusive feature of electric conductors, a situation which limits its application; conduction electrons are often problematic in the thermal design of devices. Here we report electric voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, the magnetic insulator LaY(2)Fe(5)O(12) can convert a heat flow into a spin voltage. Attached Pt films can then transform this spin voltage into an electric voltage as a result of the inverse spin Hall effect. The experimental results require us to introduce a thermally activated interface spin exchange between LaY(2)Fe(5)O(12) and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.

Citing Articles

Fundamentals and applications of van der Waals magnets in magnon spintronics.

Manas-Valero S, van der Sar T, Duine R, van Wees B Newton. 2025; 1(1):None.

PMID: 40060326 PMC: 11886975. DOI: 10.1016/j.newton.2025.100018.


Spin-dependent thermoelectric properties of a hybrid ferromagnetic metal/quantum dot/topological insulator junction.

Trocha P Sci Rep. 2025; 15(1):4904.

PMID: 39929886 PMC: 11811068. DOI: 10.1038/s41598-025-87931-7.


Longitudinal Spin Seebeck Effect Thermopiles Based on Flexible Co-Rich Amorphous Ribbons/Pt Thin-Film Heterostructures.

Correa M, Svalov A, Ferreira A, Gamino M, Silva E, Bohn F Sensors (Basel). 2023; 23(18).

PMID: 37765838 PMC: 10537014. DOI: 10.3390/s23187781.


Enhanced spin Seebeck effect via oxygen manipulation.

Kim J, Kim S, Kang M, Choi J, Lee S, Park J Nat Commun. 2023; 14(1):3365.

PMID: 37291127 PMC: 10250387. DOI: 10.1038/s41467-023-39116-x.


Interplay between diffusion and magnon-drag thermopower in pure iron and dilute iron alloy nanowire networks.

Marchal N, da Camara Santa Clara Gomes T, Araujo F, Piraux L Sci Rep. 2023; 13(1):9280.

PMID: 37286659 PMC: 10247722. DOI: 10.1038/s41598-023-36391-y.


References
1.
Valenzuela S, Tinkham M . Direct electronic measurement of the spin Hall effect. Nature. 2006; 442(7099):176-9. DOI: 10.1038/nature04937. View

2.
Hatami M, Bauer G, Zhang Q, Kelly P . Thermal spin-transfer torque in magnetoelectronic devices. Phys Rev Lett. 2007; 99(6):066603. DOI: 10.1103/PhysRevLett.99.066603. View

3.
Sinova J, Culcer D, Niu Q, Sinitsyn N, Jungwirth T, MacDonald A . Universal intrinsic spin Hall effect. Phys Rev Lett. 2004; 92(12):126603. DOI: 10.1103/PhysRevLett.92.126603. View

4.
Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M . Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature. 2010; 464(7286):262-6. DOI: 10.1038/nature08876. View

5.
Kato Y, Myers R, Gossard A, Awschalom D . Observation of the spin Hall effect in semiconductors. Science. 2004; 306(5703):1910-3. DOI: 10.1126/science.1105514. View