» Articles » PMID: 20861900

Kinetic Resolution of Constitutional Isomers Controlled by Selective Protection Inside a Supramolecular Nanocapsule

Overview
Journal Nat Chem
Specialty Chemistry
Date 2010 Sep 24
PMID 20861900
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

The concept of self-assembling container molecules as yocto-litre reaction flasks is gaining prominence. However, the idea of using such containers as a means of protection is not well developed. Here, we illustrate this idea in the context of kinetic resolutions. Specifically, we report on the use of a water-soluble, deep-cavity cavitand to bring about kinetic resolutions within pairs of esters that otherwise cannot be resolved because they react at very similar rates. Resolution occurs because the presence of the cavitand leads to a competitive binding equilibrium in which the stronger binder primarily resides inside the host and the weaker binding ester primarily resides in the bulk hydrolytic medium. For the two families of ester examined, the observed kinetic resolutions were highest within the optimally fitting smaller esters.

Citing Articles

An updated synthesis of -acid.

Gibb C, Hebert A, Ismaiel Y, Prusty P, Wyshel T, Gibb B Supramol Chem. 2025; 34(11-12):480-483.

PMID: 39902379 PMC: 11788911. DOI: 10.1080/10610278.2024.2379347.


On the Nature of Guest Complexation in Water: Triggered Wetting-Water-Mediated Binding.

Suating P, Ernst N, Alagbe B, Skinner H, Mague J, Ashbaugh H J Phys Chem B. 2022; 126(16):3150-3160.

PMID: 35438501 PMC: 9059121. DOI: 10.1021/acs.jpcb.2c00628.


Selective, cofactor-mediated catalytic oxidation of alkanethiols in a self-assembled cage host.

da Camara B, Dietz P, Chalek K, Mueller L, Hooley R Chem Commun (Camb). 2020; 56(91):14263-14266.

PMID: 33124641 PMC: 7674236. DOI: 10.1039/d0cc05765g.


Selective Monofunctionalization Enabled by Reaction-History-Dependent Communication in Catalytic Rotaxanes.

Rajappan S, McCarthy D, Campbell J, Ferrell J, Sharafi M, Ambrozaite O Angew Chem Int Ed Engl. 2020; 59(38):16668-16674.

PMID: 32525593 PMC: 7719090. DOI: 10.1002/anie.202006305.


Lipid bilayer environments control exchange kinetics of deep cavitand hosts and enhance disfavored guest conformations.

Perez L, Caulkins B, Mettry M, Mueller L, Hooley R Chem Sci. 2018; 9(7):1836-1845.

PMID: 29675229 PMC: 5890788. DOI: 10.1039/c7sc05155g.


References
1.
Natarajan A, Kaanumalle L, Jockusch S, Gibb C, Gibb B, Turro N . Controlling photoreactions with restricted spaces and weak intermolecular forces: exquisite selectivity during oxidation of olefins by singlet oxygen. J Am Chem Soc. 2007; 129(14):4132-3. DOI: 10.1021/ja070086x. View

2.
Gibb C, Gibb B . Templated assembly of water-soluble nano-capsules: inter-phase sequestration, storage, and separation of hydrocarbon gases. J Am Chem Soc. 2006; 128(51):16498-9. DOI: 10.1021/ja0670916. View

3.
Purse B, Gissot A, Rebek Jr J . A deep cavitand provides a structured environment for the Menschutkin reaction. J Am Chem Soc. 2005; 127(32):11222-3. DOI: 10.1021/ja052877+. View

4.
Vedejs E, Jure M . Efficiency in nonenzymatic kinetic resolution. Angew Chem Int Ed Engl. 2005; 44(26):3974-4001. DOI: 10.1002/anie.200460842. View

5.
Pinacho Crisostomo F, Lledo A, Shenoy S, Iwasawa T, Rebek Jr J . Recognition and organocatalysis with a synthetic cavitand receptor. J Am Chem Soc. 2009; 131(21):7402-10. PMC: 2720318. DOI: 10.1021/ja900766b. View