Global Change and the Evolution of Phenotypic Plasticity in Plants
Overview
Affiliations
Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments.
Chen X, Wang J, Liu W, Zhang Y Front Plant Sci. 2024; 15:1473456.
PMID: 39654961 PMC: 11625578. DOI: 10.3389/fpls.2024.1473456.
Microbiome transfer from native to invasive species may increase invasion risk.
Martignoni M, Kolodny O Proc Biol Sci. 2024; 291(2034):20241318.
PMID: 39500380 PMC: 11537765. DOI: 10.1098/rspb.2024.1318.
Early Life History Divergence Mediates Elevational Adaptation in a Perennial Alpine Plant.
Palsson A, Walther U, Fior S, Widmer A Ecol Evol. 2024; 14(10):e70454.
PMID: 39440209 PMC: 11493492. DOI: 10.1002/ece3.70454.
Al-Qthanin R, Radwan A, Donia A, Balah M PLoS One. 2024; 19(9):e0309568.
PMID: 39236016 PMC: 11376588. DOI: 10.1371/journal.pone.0309568.
Bimodal pattern of allometric scaling along grapevine shoots.
Haj-Yahya A, Sorek Y, Hochberg U, Ohana-Levi N, Zait Y, Shtein I Ann Bot. 2024; 134(7):1165-1176.
PMID: 39212300 PMC: 11688528. DOI: 10.1093/aob/mcae146.