» Articles » PMID: 20852017

The Bacterial Pathogen Xanthomonas Oryzae Overcomes Rice Defenses by Regulating Host Copper Redistribution

Overview
Journal Plant Cell
Specialties Biology
Cell Biology
Date 2010 Sep 21
PMID 20852017
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

Pathogen effectors are virulence factors causing plant diseases. How the host targets of these effectors facilitate pathogen infection is largely unknown. An effector of Xanthomonas oryzae pv oryzae (Xoo) transcriptionally activates rice (Oryza sativa) susceptibility gene Xa13 to cause bacterial blight disease. Xa13 encodes an indispensable plasma membrane protein of the MtN3/saliva family, which is prevalent in eukaryotes with unknown biochemical function. We show that the XA13 protein cooperates with two other proteins, COPT1 and COPT5, to promote removal of copper from xylem vessels, where Xoo multiplies and spreads to cause disease. Copper, an essential micronutrient of plants and an important element for a number of pesticides in agriculture, suppresses Xoo growth. Xoo strain PXO99 is more sensitive to copper than other strains; its infection of rice is associated with activation of XA13, COPT1, and COPT5, which modulate copper redistribution in rice. The involvement of XA13 in copper redistribution has led us to propose a mechanism of bacterial virulence.

Citing Articles

The petunia heavy metal P-type ATPase PhHMA5II1 interacts with copper chaperons and regulate Cu detoxification.

Pan L, Li R, Wu J, Li Y Plant Cell Rep. 2025; 44(2):29.

PMID: 39800793 DOI: 10.1007/s00299-024-03387-5.


Identification and Genome Sequencing of Novel Virulent Strains of pv. Causing Rice Bacterial Blight in Zhejiang, China.

Liang W, Zhou Y, Xu Z, Li Y, Chen X, Yu C Pathogens. 2025; 13(12.

PMID: 39770343 PMC: 11728688. DOI: 10.3390/pathogens13121083.


Combating plant diseases through transition metal allocation.

De A, Hoang C, Escudero V, Armas A, Echavarri-Erasun C, Gonzalez-Guerrero M New Phytol. 2024; 245(5):1833-1842.

PMID: 39707630 PMC: 11798897. DOI: 10.1111/nph.20366.


Elemental profiling and genome-wide association studies reveal genomic variants modulating ionomic composition in leaves.

Ployet R, Feng K, Zhang J, Baxter I, Glasgow D, Andrews H Front Plant Sci. 2024; 15:1450646.

PMID: 39670268 PMC: 11634625. DOI: 10.3389/fpls.2024.1450646.


Transcriptome Analysis of Rice Near-Isogenic Lines Inoculated with Two Strains of pv. , AH28 and PXO99.

Chen P, Zhang X, Li X, Sun B, Yu H, Liu Q Plants (Basel). 2024; 13(22).

PMID: 39599338 PMC: 11597379. DOI: 10.3390/plants13223129.


References
1.
Burkhead J, Gogolin Reynolds K, Abdel-Ghany S, Cohu C, Pilon M . Copper homeostasis. New Phytol. 2009; 182(4):799-816. DOI: 10.1111/j.1469-8137.2009.02846.x. View

2.
Stavrinides J, McCann H, Guttman D . Host-pathogen interplay and the evolution of bacterial effectors. Cell Microbiol. 2007; 10(2):285-92. DOI: 10.1111/j.1462-5822.2007.01078.x. View

3.
Romer P, Recht S, Strauss T, Elsaesser J, Schornack S, Boch J . Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol. 2010; 187(4):1048-1057. DOI: 10.1111/j.1469-8137.2010.03217.x. View

4.
Romer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T . Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science. 2007; 318(5850):645-8. DOI: 10.1126/science.1144958. View

5.
Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C . R gene expression induced by a type-III effector triggers disease resistance in rice. Nature. 2005; 435(7045):1122-5. DOI: 10.1038/nature03630. View