» Articles » PMID: 20847114

Changes in Cholinergic Amacrine Cells After Rodent Anterior Ischemic Optic Neuropathy (rAION)

Overview
Specialty Ophthalmology
Date 2010 Sep 18
PMID 20847114
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: Displaced cholinergic amacrine cell neurons comprise a significant fraction of the retinal ganglion cell (RGC) layer. Rodent anterior ischemic optic neuropathy (rAION) is an optic nerve infarct, which results in RGC loss in mice. The goal was to determine whether rAION produces changes in amacrine cell neurons.

Methods: rAION was generated in transgenic mice carrying a cyan fluorescent reporter protein (CFP) gene linked to the Thy-1 promoter, which expresses CFP in RGCs. rAION was induced with standard parameters. Retinas were examined pre-and post-induction by retinal fundus microscopy. rAION induction severity was scored by changes in retinal transparency and RGC loss. Cholinergic amacrine cells were identified via choline acetyltransferase (ChAT) immunohistochemistry. ChAT and CFP expression was evaluated in flat-mounted retinas examined by confocal microscopy and western analysis.

Results: Moderate rAION induction levels (defined as early retention of retinal transparency and <70% RGC loss) did not alter amacrine cell numbers in the RGC layer, but changed the relative levels of ChAT expression by immunohistochemistry. No changes in total ChAT protein were seen. Severe rAION induction (defined as loss of retinal transparency and >70% RGC loss) resulted in a trend toward amacrine cell loss and decreased ChAT protein levels.

Conclusions: There is wide disparity in mouse rAION induction levels using standardized parameters. Moderate rAION induction levels without direct retinal compromise produces isolated RGC loss, with displaced amacrine cell changes likely due to changes in RGC-amacrine communication. Severe rAION induction results in both RGC and amacrine cell loss, possibly due to intra-retinal ischemic changes.

Citing Articles

Characteristics of macrophage-like cells in acute nonarteritic anterior ischemic optic neuropathy and the normal fellow eyes on en face optical coherence tomography.

Wang W, Chen C, Yi Z, Wang X, Luo H Front Immunol. 2023; 13:1095296.

PMID: 36618342 PMC: 9816328. DOI: 10.3389/fimmu.2022.1095296.


Neuroprotection and Neuroregeneration Strategies Using the rNAION Model: Theory, Histology, Problems, Results and Analytical Approaches.

Bernstein S, Guo Y, Mehrabian Z, Miller N Int J Mol Sci. 2022; 23(24).

PMID: 36555246 PMC: 9778957. DOI: 10.3390/ijms232415604.


Biomarkers of lesion severity in a rodent model of nonarteritic anterior ischemic optic neuropathy (rNAION).

Guo Y, Mehrabian Z, Johnson M, Miller N, Henderson A, Hamlyn J PLoS One. 2021; 16(3):e0243186.

PMID: 33764998 PMC: 7993789. DOI: 10.1371/journal.pone.0243186.


A rodent model of anterior ischemic optic neuropathy (AION) based on laser photoactivation of verteporfin.

Min J, Lv Y, Mao L, Gong Y, Gu Q, Wei F BMC Ophthalmol. 2018; 18(1):304.

PMID: 30466418 PMC: 6251118. DOI: 10.1186/s12886-018-0937-5.


Soluble P-selectin promotes retinal ganglion cell survival through activation of Nrf2 signaling after ischemia injury.

Kapupara K, Wen Y, Tsai R, Huang S Cell Death Dis. 2017; 8(11):e3172.

PMID: 29144506 PMC: 5775414. DOI: 10.1038/cddis.2017.566.


References
1.
May C, Lutjen-Drecoll E . Morphology of the murine optic nerve. Invest Ophthalmol Vis Sci. 2002; 43(7):2206-12. View

2.
Bernstein S, Koo J, Slater B, Guo Y, Margolis F . Analysis of optic nerve stroke by retinal Bex expression. Mol Vis. 2006; 12:147-55. View

3.
West M, Gundersen H . Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol. 1990; 296(1):1-22. DOI: 10.1002/cne.902960102. View

4.
Moon J, Kim I, Gwon J, Park M, Kang T, Lim E . Changes in retinal neuronal populations in the DBA/2J mouse. Cell Tissue Res. 2005; 320(1):51-9. DOI: 10.1007/s00441-004-1062-8. View

5.
Masland R . The fundamental plan of the retina. Nat Neurosci. 2001; 4(9):877-86. DOI: 10.1038/nn0901-877. View