» Articles » PMID: 20833377

In Vivo Mechanisms of Vaccine-induced Protection Against HPV Infection

Overview
Publisher Cell Press
Date 2010 Sep 14
PMID 20833377
Citations 92
Authors
Affiliations
Soon will be listed here.
Abstract

Using a human papillomavirus (HPV) cervicovaginal murine challenge model, we microscopically examined the in vivo mechanisms of L1 virus-like particle (VLP) and L2 vaccine-induced inhibition of infection. In vivo HPV infection requires an initial association with the acellular basement membrane (BM) to induce conformational changes in the virion that permit its association with the keratinocyte cell surface. By passive transfer of immune serum, we determined that anti-L1 antibodies can interfere with infection at two stages. Similarly to active VLP immunization, transfer of high L1 antibody concentrations prevented BM binding. However, in the presence of low concentrations of anti-L1, virions associated with the BM, but to the epithelial cell surface was not detected. Regardless of the concentration, L2 vaccine-induced antibodies allow BM association but prevent association with the cell surface. Thus, we have revealed distinct mechanisms of vaccine-induced inhibition of virus infection in vivo.

Citing Articles

Systems serology analysis shows IgG1 and IgG3 memory responses six years after one dose of quadrivalent HPV vaccine.

Quang C, Anderson J, Russell F, Reyburn R, Ratu T, Tuivaga E Nat Commun. 2025; 16(1):2130.

PMID: 40032823 PMC: 11876628. DOI: 10.1038/s41467-025-57443-z.


A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection.

Bahojb Mahdavi S, Jebelli A, Aghbash P, Baradaran B, Amini M, Oroojalian F Med Res Rev. 2024; 45(2):349-425.

PMID: 39185567 PMC: 11796338. DOI: 10.1002/med.22073.


The role of HR-HPV integration in the progression of premalignant lesions into different cancer types.

Catalan-Castorena O, Garibay-Cerdenares O, Illades-Aguiar B, Rodriguez-Ruiz H, Zubillaga-Guerrero M, Leyva-Vazquez M Heliyon. 2024; 10(15):e34999.

PMID: 39170128 PMC: 11336306. DOI: 10.1016/j.heliyon.2024.e34999.


Lack of detectable HPV18 antibodies in 14% of quadrivalent vaccinees in a longitudinal cohort study.

Gray P, Mariz F, Eklund C, Eriksson T, Faust H, Kann H NPJ Vaccines. 2024; 9(1):146.

PMID: 39138224 PMC: 11322158. DOI: 10.1038/s41541-024-00941-w.


Advances on two serological assays for human papillomavirus provide insights on the reactivity of antibodies against a cross-neutralization epitope of the minor capsid protein L2.

Mariz F, Putzker K, Sehr P, Muller M Front Immunol. 2023; 14:1272018.

PMID: 38022617 PMC: 10663238. DOI: 10.3389/fimmu.2023.1272018.


References
1.
Munoz N, Kjaer S, Sigurdsson K, Iversen O, Hernandez-Avila M, Wheeler C . Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst. 2010; 102(5):325-39. DOI: 10.1093/jnci/djp534. View

2.
Pastrana D, Buck C, Pang Y, Thompson C, Castle P, FitzGerald P . Reactivity of human sera in a sensitive, high-throughput pseudovirus-based papillomavirus neutralization assay for HPV16 and HPV18. Virology. 2004; 321(2):205-16. DOI: 10.1016/j.virol.2003.12.027. View

3.
Pereira R, Hitzeroth I, Rybicki E . Insights into the role and function of L2, the minor capsid protein of papillomaviruses. Arch Virol. 2009; 154(2):187-97. DOI: 10.1007/s00705-009-0310-3. View

4.
Schiffman M, Castle P, Jeronimo J, Rodriguez A, Wacholder S . Human papillomavirus and cervical cancer. Lancet. 2007; 370(9590):890-907. DOI: 10.1016/S0140-6736(07)61416-0. View

5.
Bernard H, Burk R, Chen Z, Van Doorslaer K, Zur Hausen H, de Villiers E . Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010; 401(1):70-9. PMC: 3400342. DOI: 10.1016/j.virol.2010.02.002. View