» Articles » PMID: 20806381

Standardization of Relative Cerebral Blood Volume (rCBV) Image Maps for Ease of Both Inter- and Intrapatient Comparisons

Overview
Journal Magn Reson Med
Publisher Wiley
Specialty Radiology
Date 2010 Sep 1
PMID 20806381
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Relative cerebral blood volume (rCBV) measured using dynamic susceptibility contrast MRI suffers from interpatient and interstudy variability for the same tissue type. Traditionally, when a more quantitative assessment of rCBV is required, as for comparison across studies and patients, the rCBV values are normalized to the rCBV in a reference region such as normal-appearing white matter. However, this technique of normalization is subjective and time consuming and introduces user-dependent variability. In this study, we demonstrate that a method called standardization, applied to rCBV maps, is an objective means of translating all rCBV values to a consistent scale. This approach reduces interpatient and interstudy variability for the same tissue type, thus enabling easy and accurate visual and quantitative comparison across studies. One caveat to this approach is that it is not appropriate for the evaluation of global changes in blood volume, since systematic differences are removed in the process of standardization.

Citing Articles

Advances in Glioblastoma Diagnosis: Integrating Genetics, Noninvasive Sampling, and Advanced Imaging.

Gough R, Treffy R, Krucoff M, Desai R Cancers (Basel). 2025; 17(1.

PMID: 39796751 PMC: 11720166. DOI: 10.3390/cancers17010124.


Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma.

Anil A, Stokes A, Karis J, Bell L, Eschbacher J, Jennings K AJNR Am J Neuroradiol. 2024; 45(10):1545-1551.

PMID: 38782593 PMC: 11448978. DOI: 10.3174/ajnr.A8357.


How to evaluate perfusion imaging in post-treatment glioma: a comparison of three different analysis methods.

Herings S, van den Elshout R, de Wit R, Mannil M, Ravesloot C, Scheenen T Neuroradiology. 2024; 66(8):1279-1289.

PMID: 38714545 PMC: 11246270. DOI: 10.1007/s00234-024-03374-3.


Practical guidance to identify and troubleshoot suboptimal DSC-MRI results.

Prah M, Schmainda K Front Radiol. 2024; 4:1307586.

PMID: 38445104 PMC: 10913595. DOI: 10.3389/fradi.2024.1307586.


Magnetic resonance imaging-derived relative cerebral blood volume characteristics in a case of pathologically confirmed neurocysticercosis: illustrative case.

Botros N, Polinger-Hyman D, Beck R, Kleefisch C, Mrachek E, Connelly J J Neurosurg Case Lessons. 2023; 6(25).

PMID: 38109728 PMC: 10732321. DOI: 10.3171/CASE23446.


References
1.
Sugahara T, Korogi Y, Shigematsu Y, Liang L, Yoshizumi K, Kitajima M . Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. Top Magn Reson Imaging. 1999; 10(2):114-24. DOI: 10.1097/00002142-199904000-00004. View

2.
Paulson E, Schmainda K . Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008; 249(2):601-13. PMC: 2657863. DOI: 10.1148/radiol.2492071659. View

3.
Sakaie K, Shin W, Curtin K, McCarthy R, Cashen T, Carroll T . Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging. 2005; 21(5):512-9. DOI: 10.1002/jmri.20305. View

4.
Nyul L, Udupa J . On standardizing the MR image intensity scale. Magn Reson Med. 1999; 42(6):1072-81. DOI: 10.1002/(sici)1522-2594(199912)42:6<1072::aid-mrm11>3.0.co;2-m. View

5.
Law M, Cha S, Knopp E, Johnson G, Arnett J, Litt A . High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002; 222(3):715-21. DOI: 10.1148/radiol.2223010558. View