» Articles » PMID: 20802830

Effects of Congenital Heart Disease on Brain Development

Overview
Date 2010 Aug 31
PMID 20802830
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

Brain and heart development occurs simultaneously in the fetus with congenital heart disease. Early morphogenetic programs in each organ share common genetic pathways. Brain development occurs across a more protracted time-course with striking brain growth and activity-dependent formation and refinement of connections in the third trimester. This development is associated with increased metabolic activity and the brain is dependent upon the heart for oxygen and nutrient delivery. Congenital heart disease leads to derangements of fetal blood flow that result in impaired brain growth and development that can be measured with advanced magnetic resonance imaging. Delayed development results in a unique vulnerability to cerebral white matter injury in newborns with congenital heart disease. Delayed brain development and acquired white matter injury may underlay mild but pervasive neurodevelopmental impairment commonly observed in children following neonatal congenital heart surgery.

Citing Articles

PINNing cerebral blood flow: analysis of perfusion MRI in infants using physics-informed neural networks.

Galazis C, Chiu C, Arichi T, Bharath A, Varela M Front Netw Physiol. 2025; 5:1488349.

PMID: 40028512 PMC: 11868054. DOI: 10.3389/fnetp.2025.1488349.


Cognitive Functioning in Children and Young People with Congenital Heart Disease: A Systematic Review of Meta-Analyses.

Koushiou M, Manzoor S, Jossif A, Ferreira N Healthcare (Basel). 2025; 12(24.

PMID: 39766021 PMC: 11728277. DOI: 10.3390/healthcare12242594.


Preoperative autonomic failure in neonates with critical congenital heart disease.

Govindan R, Pezzato S, Ngwa J, Krishnan A, Panagopoulos E, Chirumamilla V Early Hum Dev. 2024; 200:106165.

PMID: 39613503 PMC: 11804807. DOI: 10.1016/j.earlhumdev.2024.106165.


Neonatal Seizures: New Evidence, Classification, and Guidelines.

Ziobro J, Pilon B, Wusthoff C, Benedetti G, Massey S, Yozawitz E Epilepsy Curr. 2024; :15357597241253382.

PMID: 39554267 PMC: 11562284. DOI: 10.1177/15357597241253382.


Exploring the origins of neurodevelopmental proteasomopathies associated with cardiac malformations: are neural crest cells central to certain pathological mechanisms?.

Vignard V, Baruteau A, Toutain B, Mercier S, Isidor B, Redon R Front Cell Dev Biol. 2024; 12:1370905.

PMID: 39071803 PMC: 11272537. DOI: 10.3389/fcell.2024.1370905.


References
1.
Donofrio M, Bremer Y, Schieken R, Gennings C, Morton L, Eidem B . Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol. 2003; 24(5):436-43. DOI: 10.1007/s00246-002-0404-0. View

2.
Bayatti N, Moss J, Sun L, Ambrose P, Ward J, Lindsay S . A molecular neuroanatomical study of the developing human neocortex from 8 to 17 postconceptional weeks revealing the early differentiation of the subplate and subventricular zone. Cereb Cortex. 2007; 18(7):1536-48. PMC: 2430151. DOI: 10.1093/cercor/bhm184. View

3.
Limperopoulos C, Gauvreau K, OLeary H, Moore M, Bassan H, Eichenwald E . Cerebral hemodynamic changes during intensive care of preterm infants. Pediatrics. 2008; 122(5):e1006-13. PMC: 2665182. DOI: 10.1542/peds.2008-0768. View

4.
Howard B, Mo Z, Filipovic R, Moore A, Antic S, Zecevic N . Radial glia cells in the developing human brain. Neuroscientist. 2008; 14(5):459-73. PMC: 2702478. DOI: 10.1177/1073858407313512. View

5.
Glenn O, Quiroz E, Berman J, Studholme C, Xu D . Diffusion-weighted imaging in fetuses with unilateral cortical malformations and callosal agenesis. AJNR Am J Neuroradiol. 2009; 31(6):1100-2. PMC: 6034013. DOI: 10.3174/ajnr.A1863. View