» Articles » PMID: 20725729

On Visual Pigment Templates and the Spectral Shape of Invertebrate Rhodopsins and Metarhodopsins

Overview
Publisher Springer
Date 2010 Aug 21
PMID 20725729
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The absorbance spectra of visual pigments can be approximated with mathematical expressions using as single parameter the absorbance peak wavelength. A comparison of the formulae of Stavenga et al. in Vision Res 33:1011-1017 (1993) and Govardovskii et al. in Vis Neurosci 17:509-528 (2000) applied to a number of invertebrate rhodopsins reveals that both templates well describe the normalized α-band of rhodopsins with peak wavelength > 400 nm; the template spectra are virtually indistinguishable in an absorbance range of about three log units. The template formulae of Govardovskii et al. in Vis Neurosci 17:509-528 (2000) describe the rhodopsin spectra better for absorbances below 10(-3). The template predicted spectra deviate in the ultraviolet wavelength range from each other as well as from measured spectra, preventing a definite conclusion about the spectral shape in the wavelength range <400 nm. The metarhodopsin spectra of blowfly and fruitfly R1-6 photoreceptors derived from measured data appear to be virtually identical. The established templates describe the spectral shape of fly metarhodopsin reasonably well. However, the best fitting template spectrum slightly deviates from the experimental spectra near the peak and in the long-wavelength tail. Improved formulae for fitting the fly metarhodopsin spectra are proposed.

Citing Articles

Larval swimming in the sea anemone is sensitive to a broad light spectrum and exhibits a wavelength-dependent behavioral switch.

Lilly E, Muscala M, Sharkey C, McCulloch K Ecol Evol. 2024; 14(4):e11222.

PMID: 38628921 PMC: 11019245. DOI: 10.1002/ece3.11222.


Formulae for generating standard and individual human cone spectral sensitivities.

Stockman A, Rider A Color Res Appl. 2024; 48(6):818-840.

PMID: 38504724 PMC: 10946592. DOI: 10.1002/col.22879.


Circadian rhythm entrainment of the jewel wasp, , by antagonistic interactions of multiple spectral inputs.

Wang Y, Belusic G, Pen I, Beukeboom L, Wertheim B, Stavenga D Proc Biol Sci. 2023; 290(1992):20222319.

PMID: 36750184 PMC: 9904953. DOI: 10.1098/rspb.2022.2319.


Parallel evolution of opsin visual pigments in hawkmoths by tuning of spectral sensitivities during transition from a nocturnal to a diurnal ecology.

Akiyama T, Uchiyama H, Yajima S, Arikawa K, Terai Y J Exp Biol. 2022; 225(23).

PMID: 36408938 PMC: 10112871. DOI: 10.1242/jeb.244541.


Polarized iridescence of the tropical carpenter bee, Xylocopa latipes.

Stavenga D, Kats K, Leertouwer H J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022; 209(6):877-883.

PMID: 36385431 PMC: 10643292. DOI: 10.1007/s00359-022-01592-9.


References
1.
Salcedo E, Huber A, Henrich S, Chadwell L, Chou W, Paulsen R . Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J Neurosci. 1999; 19(24):10716-26. PMC: 6784940. View

2.
Stavenga D . Visual acuity of fly photoreceptors in natural conditions--dependence on UV sensitizing pigment and light-controlling pupil. J Exp Biol. 2004; 207(Pt 10):1703-13. DOI: 10.1242/jeb.00949. View

3.
Stavenga D, van Barneveld H . On dispersion in visual photoreceptors. Vision Res. 1975; 15:1091-5. DOI: 10.1016/0042-6989(75)90006-1. View

4.
Cronin T, Jarvilehto M, Weckstrom M, Lall A . Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J Comp Physiol A. 2000; 186(1):1-12. DOI: 10.1007/s003590050001. View

5.
Kirschfeld K, Franceschini N, Minke B . Evidence for a sensitising pigment in fly photoreceptors. Nature. 1977; 269(5627):386-90. DOI: 10.1038/269386a0. View