» Articles » PMID: 20720569

Antibody-based Proteomics: Fast-tracking Molecular Diagnostics in Oncology

Overview
Journal Nat Rev Cancer
Specialty Oncology
Date 2010 Aug 20
PMID 20720569
Citations 71
Authors
Affiliations
Soon will be listed here.
Abstract

The effective implementation of personalized cancer therapeutic regimens depends on the successful identification and translation of informative biomarkers to aid clinical decision making. Antibody-based proteomics occupies a pivotal space in the cancer biomarker discovery and validation pipeline, facilitating the high-throughput evaluation of candidate markers. Although the clinical utility of these emerging technologies remains to be established, the traditional use of antibodies as affinity reagents in clinical diagnostic and predictive assays suggests that the rapid translation of such approaches is an achievable goal. Furthermore, in combination with, or as alternatives to, genomic and transcriptomic methods for patient stratification, antibody-based proteomics approaches offer the promise of additional insight into cancer disease states. In this Review, we discuss the current status of antibody-based proteomics and its contribution to the development of new assays that are crucial for the realization of individualized cancer therapy.

Citing Articles

Unveiling the power of proteomics in advancing tropical animal health and production.

Adnane M, de Almeida A, Chapwanya A Trop Anim Health Prod. 2024; 56(5):182.

PMID: 38825622 DOI: 10.1007/s11250-024-04037-4.


Single-cell multi-omics in the study of digestive system cancers.

Zhou S, Lin N, Yu L, Su X, Liu Z, Yu X Comput Struct Biotechnol J. 2024; 23:431-445.

PMID: 38223343 PMC: 10787224. DOI: 10.1016/j.csbj.2023.12.007.


Improving de novo protein binder design with deep learning.

Bennett N, Coventry B, Goreshnik I, Huang B, Allen A, Vafeados D Nat Commun. 2023; 14(1):2625.

PMID: 37149653 PMC: 10163288. DOI: 10.1038/s41467-023-38328-5.


High ETV6 Levels Support Aggressive B Lymphoma Cell Survival and Predict Poor Outcome in Diffuse Large B-Cell Lymphoma Patients.

Marino D, Pizzi M, Kotova I, Schmidt R, Schroder C, Guzzardo V Cancers (Basel). 2022; 14(2).

PMID: 35053500 PMC: 8774128. DOI: 10.3390/cancers14020338.


Towards Building a Quantitative Proteomics Toolbox in Precision Medicine: A Mini-Review.

Correa Rojo A, Heylen D, Aerts J, Thas O, Hooyberghs J, Ertaylan G Front Physiol. 2021; 12:723510.

PMID: 34512391 PMC: 8427610. DOI: 10.3389/fphys.2021.723510.


References
1.
Anderson N, Polanski M, Pieper R, Gatlin T, Tirumalai R, Conrads T . The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics. 2004; 3(4):311-26. DOI: 10.1074/mcp.M300127-MCP200. View

2.
Uemura N, Nakanishi Y, Kato H, Nagino M, Hirohashi S, Kondo T . Antibody-based proteomics for esophageal cancer: Identification of proteins in the nuclear factor-kappaB pathway and mitotic checkpoint. Cancer Sci. 2009; 100(9):1612-22. PMC: 11159346. DOI: 10.1111/j.1349-7006.2009.01230.x. View

3.
Kosari F, Munz J, Dilara Savci-Heijink C, Spiro C, Klee E, Kube D . Identification of prognostic biomarkers for prostate cancer. Clin Cancer Res. 2008; 14(6):1734-43. DOI: 10.1158/1078-0432.CCR-07-1494. View

4.
Glas A, Floore A, Delahaye L, Witteveen A, Pover R, Bakx N . Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006; 7:278. PMC: 1636049. DOI: 10.1186/1471-2164-7-278. View

5.
Carlsson A, Wingren C, Ingvarsson J, Ellmark P, Baldertorp B, Ferno M . Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. Eur J Cancer. 2008; 44(3):472-80. DOI: 10.1016/j.ejca.2007.11.025. View