» Articles » PMID: 20711644

Detection of Abnormalities for Diagnosing of Children with Autism Disorders Using of Quantitative Electroencephalography Analysis

Overview
Journal J Med Syst
Date 2010 Aug 17
PMID 20711644
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Quantitative electroencephalography (qEEG) has been used as a tool for neurophysiologic diagnostic. We used spectrogram and coherence values for evaluating qEEG in 17 children (13 boys and 4 girls aged between 6 and 11) with autism disorders (ASD) and 11 control children (7 boys and 4 girls with the same age range). Evaluation of qEEG with statistical analysis demonstrated that alpha frequency band (8-13 Hz) had the best distinction level of 96.4% in relaxed eye-opened condition using spectrogram criteria. The ASD group had significant lower spectrogram criteria values in left brain hemisphere, (p < 0.01) at F3 and T3 electrodes and (p < 0.05) at FP1, F7, C3, Cz and T5 electrodes. Coherence values at 171 pairs of EEG electrodes indicated that there are more abnormalities with higher values in the connectivity of temporal lobes with other lobes in gamma frequency band (36-44 Hz).

Citing Articles

Entropy, complexity, and spectral features of EEG signals in autism and typical development: a quantitative approach.

Tenev A, Markovska-Simoska S, Muller A, Mishkovski I Front Psychiatry. 2025; 16:1505297.

PMID: 39967584 PMC: 11832502. DOI: 10.3389/fpsyt.2025.1505297.


Interest paradigm for early identification of autism spectrum disorder: an analysis from electroencephalography combined with eye tracking.

Sun B, Calvert E, Ye A, Mao H, Liu K, Wang R Front Neurosci. 2024; 18:1502045.

PMID: 39664447 PMC: 11631861. DOI: 10.3389/fnins.2024.1502045.


Abnormalities in both stimulus-induced and baseline MEG alpha oscillations in the auditory cortex of children with Autism Spectrum Disorder.

Arutiunian V, Arcara G, Buyanova I, Fedorov M, Davydova E, Pereverzeva D Brain Struct Funct. 2024; 229(5):1225-1242.

PMID: 38683212 DOI: 10.1007/s00429-024-02802-7.


EEG Complexity Analysis of Brain States, Tasks and ASD Risk.

Wolfson S, Kirk I, Waldie K, King C Adv Neurobiol. 2024; 36:733-759.

PMID: 38468061 DOI: 10.1007/978-3-031-47606-8_37.


Classification of autism spectrum disorder using electroencephalography in Chinese children: a cross-sectional retrospective study.

Ke S, Wu H, Sun H, Zhou A, Liu J, Zheng X Front Neurosci. 2024; 18:1330556.

PMID: 38332856 PMC: 10850305. DOI: 10.3389/fnins.2024.1330556.


References
1.
Rossi P, Parmeggiani A, Bach V, Santucci M, Visconti P . EEG features and epilepsy in patients with autism. Brain Dev. 1995; 17(3):169-74. DOI: 10.1016/0387-7604(95)00019-8. View

2.
Stroganova T, Nygren G, Tsetlin M, Posikera I, Gillberg C, Elam M . Abnormal EEG lateralization in boys with autism. Clin Neurophysiol. 2007; 118(8):1842-54. DOI: 10.1016/j.clinph.2007.05.005. View

3.
Hardalac F, Yildirim H, Serhatlioglu S . Determination of carotid disease with the application of STFT and CWT methods. Comput Biol Med. 2006; 37(6):785-92. DOI: 10.1016/j.compbiomed.2006.07.003. View

4.
Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B . A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng. 2007; 4(2):R1-R13. DOI: 10.1088/1741-2560/4/2/R01. View

5.
Jeong J, Chae J, Kim S, Han S . Nonlinear dynamic analysis of the EEG in patients with Alzheimer's disease and vascular dementia. J Clin Neurophysiol. 2001; 18(1):58-67. DOI: 10.1097/00004691-200101000-00010. View