» Articles » PMID: 20696399

The RalB-RLIP76 Complex Reveals a Novel Mode of Ral-effector Interaction

Overview
Journal Structure
Publisher Cell Press
Date 2010 Aug 11
PMID 20696399
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

RLIP76 (RalBP1) is a multidomain protein that interacts with multiple small G protein families: Ral via a specific binding domain, and Rho and R-Ras via a GTPase activating domain. RLIP76 interacts with endocytosis proteins and has also been shown to behave as a membrane ATPase that transports chemotherapeutic agents from the cell. We have determined the structure of the Ral-binding domain of RLIP76 and show that it comprises a coiled-coil motif. The structure of the RLIP76-RalB complex reveals a novel mode of binding compared to the structures of RalA complexed with the exocyst components Sec5 and Exo84. RLIP76 interacts with both nucleotide-sensitive regions of RalB, and key residues in the interface have been identified using affinity measurements of RalB mutants. Sec5, Exo84, and RLIP76 bind Ral proteins competitively and with similar affinities in vitro.

Citing Articles

Regulation of cargo exocytosis by a Reps1-Ralbp1-RalA module.

Wang S, Chen X, Crisman L, Dou X, Winborn C, Wan C Sci Adv. 2023; 9(8):eade2540.

PMID: 36812304 PMC: 9946360. DOI: 10.1126/sciadv.ade2540.


The RAL Enigma: Distinct Roles of RALA and RALB in Cancer.

Richardson D, Spehar J, Han D, Chakravarthy P, Sizemore S Cells. 2022; 11(10).

PMID: 35626682 PMC: 9139244. DOI: 10.3390/cells11101645.


RLIP76: A Structural and Functional Triumvirate.

Cornish J, Owen D, Mott H Cancers (Basel). 2021; 13(9).

PMID: 34064388 PMC: 8124665. DOI: 10.3390/cancers13092206.


Affinity maturation of the RLIP76 Ral binding domain to inform the design of stapled peptides targeting the Ral GTPases.

Hurd C, Brear P, Revell J, Ross S, Mott H, Owen D J Biol Chem. 2020; 296:100101.

PMID: 33214225 PMC: 7949049. DOI: 10.1074/jbc.RA120.015735.


Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel.

Killoran R, Smith M J Biol Chem. 2019; 294(25):9937-9948.

PMID: 31088913 PMC: 6597838. DOI: 10.1074/jbc.RA119.008653.


References
1.
Nicely N, Kosak J, de Serrano V, Mattos C . Crystal structures of Ral-GppNHp and Ral-GDP reveal two binding sites that are also present in Ras and Rap. Structure. 2004; 12(11):2025-36. DOI: 10.1016/j.str.2004.08.011. View

2.
Eathiraj S, Pan X, Ritacco C, Lambright D . Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature. 2005; 436(7049):415-9. PMC: 1360218. DOI: 10.1038/nature03798. View

3.
Brunger A, Adams P, Clore G, DeLano W, Gros P, Grosse-Kunstleve R . Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998; 54(Pt 5):905-21. DOI: 10.1107/s0907444998003254. View

4.
Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, Tavitian A . Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem. 1995; 270(38):22473-7. DOI: 10.1074/jbc.270.38.22473. View

5.
Yamaguchi A, Urano T, Goi T, Feig L . An Eps homology (EH) domain protein that binds to the Ral-GTPase target, RalBP1. J Biol Chem. 1998; 272(50):31230-4. DOI: 10.1074/jbc.272.50.31230. View