» Articles » PMID: 20691249

Selective Cytotoxicity of Intense Nanosecond-duration Electric Pulses in Mammalian Cells

Overview
Specialties Biochemistry
Biophysics
Date 2010 Aug 10
PMID 20691249
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Nanosecond electric pulses (EP) disrupt cell membrane and organelles and cause cell death in a manner different from the conventional irreversible electroporation. We explored the cytotoxic effect of 10-ns EP (quantitation, mechanisms, efficiency, and specificity) in comparison with 300-ns, 1.8- and 9-μs EP.

Methods: Effects in Jurkat and U937 cells were characterized by survival assays, DNA electrophoresis and flow cytometry.

Results: 10-ns EP caused apoptotic or necrotic death within 2-20 h. Survival (S, %) followed the absorbed dose (D, J/g) as: S=alphaD((-K)), where coefficients K and alpha determined the slope and the "shoulder" of the survival curve. K was similar in all groups, whereas alpha was cell type- and pulse duration-dependent. Long pulses caused immediate propidium uptake and phosphatidylserine (PS) externalization, whereas 10-ns pulses caused PS externalization only.

Conclusions: 1.8- and 9-μs EP cause cell death efficiently and indiscriminately (LD₅₀ 1-3 J/g in both cell lines); 10-ns EP are less efficient, but very selective (LD₅₀ 50-80 J/g for Jurkat and 400-500 J/g for U937); 300-ns EP show intermediate effects. Shorter EP open propidium-impermeable, small membrane pores ("nanopores"), triggering different cell death mechanisms.

General Significance: Nanosecond EP can selectively target certain cells in medical applications like tumor ablation.

Citing Articles

Potentiation of Gelonin Cytotoxicity by Pulsed Electric Fields.

Pakhomova O, Zivla E, Silkuniene G, Silkunas M, Pakhomov A Int J Mol Sci. 2025; 26(2.

PMID: 39859180 PMC: 11764505. DOI: 10.3390/ijms26020458.


Ablating Myocardium Using Nanosecond Pulsed Electric Fields: Preclinical Assessment of Feasibility, Safety, and Durability.

Nies M, Watanabe K, Kawamura I, Wang B, Litt J, Turovskiy R Circ Arrhythm Electrophysiol. 2024; 17(7):e012854.

PMID: 38758741 PMC: 11254255. DOI: 10.1161/CIRCEP.124.012854.


Enhanced Cell Viability and Migration of Primary Bovine Annular Fibrosus Fibroblast-like Cells Induced by Microsecond Pulsed Electric Field Exposure.

Atsu P, Mowen C, Thompson G ACS Omega. 2023; 8(40):36815-36822.

PMID: 37841191 PMC: 10568721. DOI: 10.1021/acsomega.3c03518.


Effect of nanosecond pulsed electric fields (nsPEFs) on coronavirus survival.

Cantu J, Barnes R, Gamboa B, Keister A, Echchgadda I, Ibey B AMB Express. 2023; 13(1):95.

PMID: 37689615 PMC: 10492771. DOI: 10.1186/s13568-023-01601-3.


Identification of Proteins Involved in Cell Membrane Permeabilization by Nanosecond Electric Pulses (nsEP).

Silkuniene G, Mangalanathan U, Rossi A, Mollica P, Pakhomov A, Pakhomova O Int J Mol Sci. 2023; 24(11).

PMID: 37298142 PMC: 10253066. DOI: 10.3390/ijms24119191.


References
1.
Neumann E, Toensing K, Kakorin S, Budde P, Frey J . Mechanism of electroporative dye uptake by mouse B cells. Biophys J. 1998; 74(1):98-108. PMC: 1299366. DOI: 10.1016/S0006-3495(98)77771-9. View

2.
Idone V, Tam C, Andrews N . Two-way traffic on the road to plasma membrane repair. Trends Cell Biol. 2008; 18(11):552-9. PMC: 2593466. DOI: 10.1016/j.tcb.2008.09.001. View

3.
Garon E, Sawcer D, Vernier P, Tang T, Sun Y, Marcu L . In vitro and in vivo evaluation and a case report of intense nanosecond pulsed electric field as a local therapy for human malignancies. Int J Cancer. 2007; 121(3):675-82. DOI: 10.1002/ijc.22723. View

4.
Muller K, Horbaschek M, Lucas K, Zimmermann U, Sukhorukov V . Electrotransfection of anchorage-dependent mammalian cells. Exp Cell Res. 2003; 288(2):344-53. DOI: 10.1016/s0014-4827(03)00224-6. View

5.
Kinosita Jr K, Tsong T . Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature. 1977; 268(5619):438-41. DOI: 10.1038/268438a0. View