» Articles » PMID: 20663485

Separate Roles of Structured and Unstructured Regions of Y-family DNA Polymerases

Overview
Publisher Elsevier
Specialty Biochemistry
Date 2010 Jul 29
PMID 20663485
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

All organisms have multiple DNA polymerases specialized for translesion DNA synthesis (TLS) on damaged DNA templates. Mammalian TLS DNA polymerases include Pol eta, Pol iota, Pol kappa, and Rev1 (all classified as "Y-family" members) and Pol zeta (a "B-family" member). Y-family DNA polymerases have highly structured catalytic domains; however, some of these proteins adopt different structures when bound to DNA (such as archaeal Dpo4 and human Pol kappa), while others maintain similar structures independently of DNA binding (such as archaeal Dbh and Saccharomyces cerevisiae Pol eta). DNA binding-induced structural conversions of TLS polymerases depend on flexible regions present within the catalytic domains. In contrast, noncatalytic regions of Y-family proteins, which contain multiple domains and motifs for interactions with other proteins, are predicted to be mostly unstructured, except for short regions corresponding to ubiquitin-binding domains. In this review we discuss how the organization of structured and unstructured regions in TLS polymerases is relevant to their regulation and function during lesion bypass.

Citing Articles

FAN1-mediated translesion synthesis and POLQ/HELQ-mediated end joining generate interstrand crosslink-induced mutations.

Verschuren J, van Schendel R, van Bostelen I, Verkennis A, Knipscheer P, Tijsterman M Nat Commun. 2025; 16(1):2495.

PMID: 40082407 PMC: 11906846. DOI: 10.1038/s41467-025-57764-z.


Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.

Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat K, Pandita T Mol Cell Biol. 2023; 43(8):401-425.

PMID: 37439479 PMC: 10448981. DOI: 10.1080/10985549.2023.2224199.


Mitotic DNA synthesis in response to replication stress requires the sequential action of DNA polymerases zeta and delta in human cells.

Wu W, Barwacz S, Bhowmick R, Lundgaard K, Goncalves Dinis M, Clausen M Nat Commun. 2023; 14(1):706.

PMID: 36759509 PMC: 9911744. DOI: 10.1038/s41467-023-35992-5.


Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice.

Belli G, Colomina N, Castells-Roca L, Lorite N J Fungi (Basel). 2022; 8(6).

PMID: 35736104 PMC: 9225081. DOI: 10.3390/jof8060621.


Recent Advances in Understanding the Structures of Translesion Synthesis DNA Polymerases.

Ling J, Frevert Z, Washington M Genes (Basel). 2022; 13(5).

PMID: 35627300 PMC: 9141541. DOI: 10.3390/genes13050915.


References
1.
Silvian L, Toth E, Pham P, Goodman M, Ellenberger T . Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol. 2001; 8(11):984-9. DOI: 10.1038/nsb1101-984. View

2.
Sohn S, Cho Y . Crystal structure of the human rad9-hus1-rad1 clamp. J Mol Biol. 2009; 390(3):490-502. DOI: 10.1016/j.jmb.2009.05.028. View

3.
Vidal A, Woodgate R . Insights into the cellular role of enigmatic DNA polymerase iota. DNA Repair (Amst). 2009; 8(3):420-3. DOI: 10.1016/j.dnarep.2008.12.007. View

4.
Fink A . Natively unfolded proteins. Curr Opin Struct Biol. 2005; 15(1):35-41. DOI: 10.1016/j.sbi.2005.01.002. View

5.
McCulloch S, Kokoska R, Masutani C, Iwai S, Hanaoka F, Kunkel T . Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature. 2004; 428(6978):97-100. DOI: 10.1038/nature02352. View