» Articles » PMID: 20660346

Redox Regulatory Mechanism of Transnitrosylation by Thioredoxin

Overview
Date 2010 Jul 28
PMID 20660346
Citations 75
Authors
Affiliations
Soon will be listed here.
Abstract

Transnitrosylation and denitrosylation are emerging as key post-translational modification events in regulating both normal physiology and a wide spectrum of human diseases. Thioredoxin 1 (Trx1) is a conserved antioxidant that functions as a classic disulfide reductase. It also catalyzes the transnitrosylation or denitrosylation of caspase 3 (Casp3), underscoring its central role in determining Casp3 nitrosylation specificity. However, the mechanisms that regulate Trx1 transnitrosylation and denitrosylation of specific targets are unresolved. Here we used an optimized mass spectrometric method to demonstrate that Trx1 is itself nitrosylated by S-nitrosoglutathione at Cys(73) only after the formation of a Cys(32)-Cys(35) disulfide bond upon which the disulfide reductase and denitrosylase activities of Trx1 are attenuated. Following nitrosylation, Trx1 subsequently transnitrosylates Casp3. Overexpression of Trx1(C32S/C35S) (a mutant Trx1 with both Cys(32) and Cys(35) replaced by serine to mimic the disulfide reductase-inactive Trx1) in HeLa cells promoted the nitrosylation of specific target proteins. Using a global proteomics approach, we identified 47 novel Trx1 transnitrosylation target protein candidates. From further bioinformatics analysis of this set of nitrosylated peptides, we identified consensus motifs that are likely to be the determinants of Trx1-mediated transnitrosylation specificity. Among these proteins, we confirmed that Trx1 directly transnitrosylates peroxiredoxin 1 at Cys(173) and Cys(83) and protects it from H(2)O(2)-induced overoxidation. Functionally, we found that Cys(73)-mediated Trx1 transnitrosylation of target proteins is important for protecting HeLa cells from apoptosis. These data demonstrate that the ability of Trx1 to transnitrosylate target proteins is regulated by a crucial stepwise oxidative and nitrosative modification of specific cysteines, suggesting that Trx1, as a master regulator of redox signaling, can modulate target proteins via alternating modalities of reduction and nitrosylation.

Citing Articles

Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences.

Greskova A, Petrivalsky M Insects. 2024; 15(10).

PMID: 39452373 PMC: 11508645. DOI: 10.3390/insects15100797.


Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications.

Seitz R, Tumen D, Kunst C, Heumann P, Schmid S, Kandulski A Antioxidants (Basel). 2024; 13(9).

PMID: 39334737 PMC: 11428833. DOI: 10.3390/antiox13091078.


Facilitating Nitrite-Derived S-Nitrosothiol Formation in the Upper Gastrointestinal Tract in the Therapy of Cardiovascular Diseases.

Silva-Cunha M, Lacchini R, Tanus-Santos J Antioxidants (Basel). 2024; 13(6).

PMID: 38929130 PMC: 11200996. DOI: 10.3390/antiox13060691.


Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models.

Shcholok T, Eftekharpour E Biology (Basel). 2024; 13(3).

PMID: 38534450 PMC: 10968256. DOI: 10.3390/biology13030180.


SNO-DCA: A model for predicting -nitrosylation sites based on densely connected convolutional networks and attention mechanism.

Jia J, Lv P, Wei X, Qiu W Heliyon. 2023; 10(1):e23187.

PMID: 38148797 PMC: 10750070. DOI: 10.1016/j.heliyon.2023.e23187.


References
1.
Sun J, Xin C, Eu J, Stamler J, Meissner G . Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A. 2001; 98(20):11158-62. PMC: 58700. DOI: 10.1073/pnas.201289098. View

2.
Huang B, Chen C . An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol Med. 2006; 41(4):562-7. DOI: 10.1016/j.freeradbiomed.2006.03.006. View

3.
Huang B, Chen S, Wang D . Shear flow increases S-nitrosylation of proteins in endothelial cells. Cardiovasc Res. 2009; 83(3):536-46. DOI: 10.1093/cvr/cvp154. View

4.
Vieira H, Belzacq A, Haouzi D, Bernassola F, Cohen I, Jacotot E . The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene. 2001; 20(32):4305-16. DOI: 10.1038/sj.onc.1204575. View

5.
Johnson M, Macdonald T, Mannick J, Conaway M, Gaston B . Accelerated s-nitrosothiol breakdown by amyotrophic lateral sclerosis mutant copper,zinc-superoxide dismutase. J Biol Chem. 2001; 276(43):39872-8. DOI: 10.1074/jbc.M102781200. View