» Articles » PMID: 20653029

Evaluation of Inputs to Rat Primary Auditory Cortex from the Suprageniculate Nucleus and Extrastriate Visual Cortex

Overview
Journal J Comp Neurol
Specialty Neurology
Date 2010 Jul 24
PMID 20653029
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Evidence indicates that visual stimuli influence cells in the primary auditory cortex. To evaluate potential sources of this visual input and how they enter into the circuitry of the auditory cortex, we examined axonal terminations in the primary auditory cortex from nonprimary extrastriate visual cortex (V2M, V2L) and from the multimodal thalamic suprageniculate nucleus (SG). Gross biocytin/biotinylated dextran amine (BDA) injections into the SG or extrastriate cortex labeled inputs terminating primarily in superficial and deep layers. SG projects primarily to layers I, V, and VI while V2M and V2L project primarily to layers I and VI, with V2L also targeting layers II/III. Layer I inputs differ in that SG terminals are concentrated superficially, V2L are deeper, and V2M are equally distributed throughout. Individual axonal reconstructions document that single axons can 1) innervate multiple layers; 2) run considerable distances in layer I; and 3) run preferentially in the dorsoventral direction similar to isofrequency axes. At the electron microscopic level, SG and V2M terminals 1) are the same size regardless of layer; 2) are non-gamma-aminobutyric acid (GABA)ergic; 3) are smaller than ventral medial geniculate terminals synapsing in layer IV; 4) make asymmetric synapses onto dendrites/spines that 5) are non-GABAergic and 6) are slightly larger in layer I. Thus, both areas provide a substantial feedback-like input with differences that may indicate potentially different roles.

Citing Articles

Visual Coding along Multiple Brain Areas.

de Araujo Xavier V, da Silva Melo N, Ribeiro S, de Vasconcelos N Int J Psychol Res (Medellin). 2025; 17(2):54-75.

PMID: 39927237 PMC: 11804122. DOI: 10.21500/20112084.7390.


Sleep- and sleep deprivation-related changes of vertex auditory evoked potentials during the estrus cycle in female rats.

Toth A, Traub M, Bencsik N, Detari L, Hajnik T, Dobolyi A Sci Rep. 2024; 14(1):5784.

PMID: 38461157 PMC: 10924932. DOI: 10.1038/s41598-024-56392-9.


Selective blockade of rat brain T-type calcium channels provides insights on neurophysiological basis of arousal dependent resting state functional magnetic resonance imaging signals.

Sharghi V, Maltbie E, Pan W, Keilholz S, Gopinath K Front Neurosci. 2022; 16:909999.

PMID: 36003960 PMC: 9393715. DOI: 10.3389/fnins.2022.909999.


Glycinergic axonal inhibition subserves acute spatial sensitivity to sudden increases in sound intensity.

Franken T, Bondy B, Haimes D, Goldwyn J, Golding N, Smith P Elife. 2021; 10.

PMID: 34121662 PMC: 8238506. DOI: 10.7554/eLife.62183.


Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain.

Xu X, Hanganu-Opatz I, Bieler M Front Neurorobot. 2020; 14:7.

PMID: 32116637 PMC: 7034303. DOI: 10.3389/fnbot.2020.00007.


References
1.
Clemo H, Sharma G, Allman B, Meredith M . Auditory projections to extrastriate visual cortex: connectional basis for multisensory processing in 'unimodal' visual neurons. Exp Brain Res. 2008; 191(1):37-47. PMC: 2827203. DOI: 10.1007/s00221-008-1493-7. View

2.
Houser C, Hendry S, Jones E, Vaughn J . Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex. J Neurocytol. 1983; 12(4):617-38. DOI: 10.1007/BF01181527. View

3.
Rosa M, Krubitzer L . The evolution of visual cortex: where is V2?. Trends Neurosci. 1999; 22(6):242-8. DOI: 10.1016/s0166-2236(99)01398-3. View

4.
Houser C, Vaughn J, Barber R, Roberts E . GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 1980; 200(2):341-54. DOI: 10.1016/0006-8993(80)90925-7. View

5.
Clerici W, Coleman J . Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. J Comp Neurol. 1990; 297(1):14-31. DOI: 10.1002/cne.902970103. View