» Articles » PMID: 20643973

Extremely Slow Intramolecular Diffusion in Unfolded Protein L

Overview
Specialty Science
Date 2010 Jul 21
PMID 20643973
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

A crucial parameter in many theories of protein folding is the rate of diffusion over the energy landscape. Using a microfluidic mixer we have observed the rate of intramolecular diffusion within the unfolded B1 domain of protein L before it folds. The diffusion-limited rate of intramolecular contact is about 20 times slower than the rate in 6 M GdnHCl, and because in these conditions the protein is also more compact, the intramolecular diffusion coefficient decreases 100-500 times. The dramatic slowdown in diffusion occurs within the 250 micros mixing time of the mixer, and there appears to be no further evolution of this rate before reaching the transition state of folding. We show that observed folding rates are well predicted by a Kramers model with a denaturant-dependent diffusion coefficient and speculate that this diffusion coefficient is a significant contribution to the observed rate of folding.

Citing Articles

Zero- to low-field relaxometry of chemical and biological fluids.

Alcicek S, Put P, Kubrak A, Alcicek F, Barskiy D, Gloeggler S Commun Chem. 2023; 6(1):165.

PMID: 37542142 PMC: 10403525. DOI: 10.1038/s42004-023-00965-8.


Modeling Concentration-dependent Phase Separation Processes Involving Peptides and RNA via Residue-Based Coarse-Graining.

Valdes-Garcia G, Heo L, Lapidus L, Feig M J Chem Theory Comput. 2023; .

PMID: 36607820 PMC: 10323037. DOI: 10.1021/acs.jctc.2c00856.


Characterizing Transient Protein-Protein Interactions by Trp-Cys Quenching and Computer Simulations.

Heo L, Gamage K, Valdes-Garcia G, Lapidus L, Feig M J Phys Chem Lett. 2022; 13(43):10175-10182.

PMID: 36279257 PMC: 9870652. DOI: 10.1021/acs.jpclett.2c02723.


Gradual compaction of the nascent peptide during cotranslational folding on the ribosome.

Liutkute M, Maiti M, Samatova E, Enderlein J, Rodnina M Elife. 2020; 9.

PMID: 33112737 PMC: 7593090. DOI: 10.7554/eLife.60895.


Slow Folding of a Helical Protein: Large Barriers, Strong Internal Friction, or a Shallow, Bumpy Landscape?.

Subramanian S, Golla H, Divakar K, Kannan A, De Sancho D, Naganathan A J Phys Chem B. 2020; 124(41):8973-8983.

PMID: 32955882 PMC: 7659034. DOI: 10.1021/acs.jpcb.0c05976.


References
1.
Ghosh K, Ozkan S, Dill K . The ultimate speed limit to protein folding is conformational searching. J Am Chem Soc. 2007; 129(39):11920-7. DOI: 10.1021/ja066785b. View

2.
Sadqi M, Lapidus L, Munoz V . How fast is protein hydrophobic collapse?. Proc Natl Acad Sci U S A. 2003; 100(21):12117-22. PMC: 218722. DOI: 10.1073/pnas.2033863100. View

3.
Kubelka J, Hofrichter J, Eaton W . The protein folding 'speed limit'. Curr Opin Struct Biol. 2004; 14(1):76-88. DOI: 10.1016/j.sbi.2004.01.013. View

4.
Plaxco K, Baker D . Limited internal friction in the rate-limiting step of a two-state protein folding reaction. Proc Natl Acad Sci U S A. 1998; 95(23):13591-6. PMC: 24863. DOI: 10.1073/pnas.95.23.13591. View

5.
Voelz V, Singh V, Wedemeyer W, Lapidus L, Pande V . Unfolded-state dynamics and structure of protein L characterized by simulation and experiment. J Am Chem Soc. 2010; 132(13):4702-9. PMC: 2853762. DOI: 10.1021/ja908369h. View