» Articles » PMID: 20643048

Probing the Role of the Internal Disulfide Bond in Regulating Conformational Dynamics in Neuroglobin

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2010 Jul 21
PMID 20643048
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

In this report, we demonstrate that the internal disulfide bridge in human neuroglobin modulates structural changes associated with ligand photo-dissociation from the heme active site. This is evident from time-resolved photothermal studies of CO photo-dissociation, which reveal a 13.4+/-0.9 mL mol(-1) volume expansion upon ligand photo-release from human neuroglobin, whereas the CO dissociation from rat neuroglobin leads to a significantly smaller volume change (DeltaV=4.6+/-0.3 mL mol(-1)). Reduction of the internal disulfide bond in human neuroglobin leads to conformational changes (reflected by DeltaV) nearly identical to those observed for rat Ngb. Our data favor the hypothesis that the disulfide bond between Cys46 and Cys55 modulates the functioning of human neuroglobin.

Citing Articles

Hydrogen peroxide induces heme degradation and protein aggregation in human neuroglobin: roles of the disulfide bridge and hydrogen-bonding in the distal heme cavity.

Di Rocco G, Bernini F, Battistuzzi G, Ranieri A, Bortolotti C, Borsari M FEBS J. 2022; 290(1):148-161.

PMID: 35866372 PMC: 10087938. DOI: 10.1111/febs.16581.


Enhancement of protein stability by an additional disulfide bond designed in human neuroglobin.

Liu H, Li L, Yang X, Wei C, Cheng H, Gao S RSC Adv. 2022; 9(8):4172-4179.

PMID: 35520156 PMC: 9062612. DOI: 10.1039/c8ra10390a.


Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection.

De Simone G, Sbardella D, Oddone F, Pesce A, Coletta M, Ascenzi P Cells. 2021; 10(12).

PMID: 34943874 PMC: 8699588. DOI: 10.3390/cells10123366.


Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences.

Tejero J, Kapralov A, Baumgartner M, Sparacino-Watkins C, Anthonymutu T, Vlasova I Biochim Biophys Acta. 2016; 1861(5):391-401.

PMID: 26928591 PMC: 4821708. DOI: 10.1016/j.bbalip.2016.02.022.


A possible mechanism for redox control of human neuroglobin activity.

Morozov A, Roach J, Kotzer M, Chatfield D J Chem Inf Model. 2014; 54(7):1997-2003.

PMID: 24855999 PMC: 4114473. DOI: 10.1021/ci5002108.


References
1.
Nadra A, Marti M, Pesce A, Bolognesi M, Estrin D . Exploring the molecular basis of heme coordination in human neuroglobin. Proteins. 2007; 71(2):695-705. DOI: 10.1002/prot.21814. View

2.
Greenberg D, Jin K, Khan A . Neuroglobin: an endogenous neuroprotectant. Curr Opin Pharmacol. 2007; 8(1):20-4. PMC: 2387246. DOI: 10.1016/j.coph.2007.09.003. View

3.
Kriegl J, Bhattacharyya A, Nienhaus K, Deng P, Minkow O, Nienhaus G . Ligand binding and protein dynamics in neuroglobin. Proc Natl Acad Sci U S A. 2002; 99(12):7992-7. PMC: 123008. DOI: 10.1073/pnas.082244399. View

4.
Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T . Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure. 2003; 11(9):1087-95. DOI: 10.1016/s0969-2126(03)00166-7. View

5.
Anselmi M, Brunori M, Vallone B, Di Nola A . Molecular dynamics simulation of deoxy and carboxy murine neuroglobin in water. Biophys J. 2007; 93(2):434-41. PMC: 1896225. DOI: 10.1529/biophysj.106.099648. View