» Articles » PMID: 20618691

Collateral Capillary Arterialization Following Arteriolar Ligation in Murine Skeletal Muscle

Overview
Date 2010 Jul 13
PMID 20618691
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

Objective: Chronic and acute ischemic diseases-peripheral artery disease, coronary artery disease, stroke-result in tissue damage unless blood flow is maintained or restored in a timely manner. Mice of different strains recover from arteriolar ligation (by increasing collateral blood flow) at different speeds. We quantify the spatio-temporal patterns of microvascular network remodeling following arteriolar ligation in different mouse strains to better understand inter-individual variability.

Methods: Whole-muscle spinotrapezius microvascular networks of mouse strains C57Bl/6, Balb/c and CD1 were imaged using confocal microscopy following ligation of feeding arterioles.

Results: Baseline arteriolar structures of C57Bl/6 and Balb/c mice feature heavily ramified arcades and unconnected dendritic trees, respectively. This network angioarchitecture identifies ischemia-protected and ischemia-vulnerable tissues; unlike C57Bl/6, downstream capillary perfusion in Balb/c spinotrapezius is lost following ligation. Perfusion recovery requires arterialization (expansion and investment of mural cells) of a subset of capillaries forming a new low-resistance collateral pathway between arteriolar trees. Outbred CD1 exhibit either Balb/c-like or C57Bl/6-like spinotrapezius angioarchitecture, predictive of response to arteriolar ligation.

Conclusions: This collateral capillary arterialization process may explain the reported longer time required for blood flow recovery in Balb/c hindlimb ischemia, as low-resistance blood flow pathways along capillary conduits must be formed ("arterialization") before reperfusion.

Citing Articles

Collateral blood vessels in stroke and ischemic disease: Formation, physiology, rarefaction, remodeling.

Faber J J Cereb Blood Flow Metab. 2025; :271678X251322378.

PMID: 40072222 PMC: 11904929. DOI: 10.1177/0271678X251322378.


Experimental and theoretical model of microvascular network remodeling and blood flow redistribution following minimally invasive microvessel laser ablation.

Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu L, Lenco M Sci Rep. 2024; 14(1):8767.

PMID: 38627467 PMC: 11021487. DOI: 10.1038/s41598-024-59296-w.


Quantifying Microvascular Structure in Healthy and Infarcted Rat Hearts Using Optical Coherence Tomography Angiography.

Xie Z, Zeinstra N, Kirby M, Le N, Murry C, Zheng Y IEEE Trans Med Imaging. 2024; 43(8):2878-2887.

PMID: 38568757 PMC: 11341234. DOI: 10.1109/TMI.2024.3381934.


Experimental and Theoretical Model of Single Vessel Minimally Invasive Micro-Laser Ablation: Inducing Microvascular Network Remodeling and Blood Flow Redistribution Without Compromising Host Tissue Function.

Gruionu G, Baish J, McMahon S, Blauvelt D, Gruionu L, Lenco M Res Sq. 2024; .

PMID: 38196660 PMC: 10775362. DOI: 10.21203/rs.3.rs-3754775/v1.


Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants.

Faber J, Zhang H, Xenakis J, Bell T, Hock P, Pardo-Manuel de Villena F J Cereb Blood Flow Metab. 2023; 43(11):1983-2004.

PMID: 37572089 PMC: 10676139. DOI: 10.1177/0271678X231194956.


References
1.
Eitenmuller I, Volger O, Kluge A, Troidl K, Barancik M, Cai W . The range of adaptation by collateral vessels after femoral artery occlusion. Circ Res. 2006; 99(6):656-62. DOI: 10.1161/01.RES.0000242560.77512.dd. View

2.
Chalothorn D, Clayton J, Zhang H, Pomp D, Faber J . Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol Genomics. 2007; 30(2):179-91. DOI: 10.1152/physiolgenomics.00047.2007. View

3.
Schaper W . Collateral circulation: past and present. Basic Res Cardiol. 2008; 104(1):5-21. PMC: 2755790. DOI: 10.1007/s00395-008-0760-x. View

4.
Majid A, He Y, Gidday J, Kaplan S, Gonzales E, Park T . Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke. 2000; 31(11):2707-14. DOI: 10.1161/01.str.31.11.2707. View

5.
Schierling W, Troidl K, Troidl C, Schmitz-Rixen T, Schaper W, Eitenmuller I . The role of angiogenic growth factors in arteriogenesis. J Vasc Res. 2009; 46(4):365-74. DOI: 10.1159/000189797. View