» Articles » PMID: 20600970

A Spatiotemporal Atlas of MR Intensity, Tissue Probability and Shape of the Fetal Brain with Application to Segmentation

Overview
Journal Neuroimage
Specialty Radiology
Date 2010 Jul 6
PMID 20600970
Citations 70
Authors
Affiliations
Soon will be listed here.
Abstract

Modeling and analysis of MR images of the developing human brain is a challenge due to rapid changes in brain morphology and morphometry. We present an approach to the construction of a spatiotemporal atlas of the fetal brain with temporal models of MR intensity, tissue probability and shape changes. This spatiotemporal model is created from a set of reconstructed MR images of fetal subjects with different gestational ages. Groupwise registration of manual segmentations and voxelwise nonlinear modeling allow us to capture the appearance, disappearance and spatial variation of brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific MR templates and tissue probability maps and use them to initialize automatic tissue delineation in new MR images. The choice of model parameters and the final performance are evaluated using clinical MR scans of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Experimental results indicate that quadratic temporal models can correctly capture growth-related changes in the fetal brain anatomy and provide improvement in accuracy of atlas-based tissue segmentation.

Citing Articles

Longitudinal Assessment of Abnormal Cortical Folding in Fetuses and Neonates With Isolated Non-Severe Ventriculomegaly.

Urru A, Benkarim O, Marti-Juan G, Hahner N, Piella G, Eixarch E Brain Behav. 2025; 15(1):e70255.

PMID: 39832168 PMC: 11745156. DOI: 10.1002/brb3.70255.


Pathogenesis of Germinal Matrix Hemorrhage: Insights from Single-Cell Transcriptomics.

Chen J, Choi J, Lin P, Huang E Annu Rev Pathol. 2024; 20(1):221-243.

PMID: 39401848 PMC: 11759652. DOI: 10.1146/annurev-pathmechdis-111523-023446.


Normative spatiotemporal fetal brain maturation with satisfactory development at 2 years.

Namburete A, Papiez B, Fernandes M, Wyburd M, Hesse L, Moser F Nature. 2023; 623(7985):106-114.

PMID: 37880365 PMC: 10620088. DOI: 10.1038/s41586-023-06630-3.


A spatio-temporal atlas of the developing fetal brain with spina bifida aperta.

Fidon L, Viola E, Mufti N, David A, Melbourne A, Demaerel P Open Res Eur. 2023; 1:123.

PMID: 37645096 PMC: 10445840. DOI: 10.12688/openreseurope.13914.2.


Neuromorphological Atlas of Human Prenatal Brain Development: White Paper.

Proshchina A, Kharlamova A, Krivova Y, Godovalova O, Otlyga D, Gulimova V Life (Basel). 2023; 13(5).

PMID: 37240827 PMC: 10221423. DOI: 10.3390/life13051182.


References
1.
Shen D, Davatzikos C . HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imaging. 2003; 21(11):1421-39. DOI: 10.1109/TMI.2002.803111. View

2.
Warfield S, Kaus M, Jolesz F, Kikinis R . Adaptive, template moderated, spatially varying statistical classification. Med Image Anal. 2000; 4(1):43-55. DOI: 10.1016/s1361-8415(00)00003-7. View

3.
Habas P, Kim K, Rousseau F, Glenn O, Barkovich A, Studholme C . Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum Brain Mapp. 2010; 31(9):1348-58. PMC: 3306251. DOI: 10.1002/hbm.20935. View

4.
Jiang S, Xue H, Glover A, Rutherford M, Rueckert D, Hajnal J . MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. IEEE Trans Med Imaging. 2007; 26(7):967-80. DOI: 10.1109/TMI.2007.895456. View

5.
Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L . MRI of normal fetal brain development. Eur J Radiol. 2006; 57(2):199-216. DOI: 10.1016/j.ejrad.2005.11.020. View