» Articles » PMID: 20588977

Lensfree On-chip Microscopy over a Wide Field-of-view Using Pixel Super-resolution

Overview
Journal Opt Express
Date 2010 Jul 1
PMID 20588977
Citations 104
Authors
Affiliations
Soon will be listed here.
Abstract

We demonstrate lensfree holographic microscopy on a chip to achieve approximately 0.6 microm spatial resolution corresponding to a numerical aperture of approximately 0.5 over a large field-of-view of approximately 24 mm2. By using partially coherent illumination from a large aperture (approximately 50 microm), we acquire lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, we implement a sub-pixel shifting based super-resolution algorithm to effectively recover much higher resolution digital holograms of the objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip active area, which is also equivalent to the imaging field-of-view (24 mm2) due to unit magnification. We demonstrate the success of this pixel super-resolution approach by imaging patterned transparent substrates, blood smear samples, as well as Caenoharbditis Elegans.

Citing Articles

A Sub-Pixel Measurement Platform Using Twist-Angle Analysis in Two-Dimensional Planes.

Lyu J, Kong W, Zhou Y, Pi Y, Cao Z Sensors (Basel). 2025; 25(4).

PMID: 40006311 PMC: 11859425. DOI: 10.3390/s25041081.


Lens-Free On-Chip Quantitative Phase Microscopy for Large Phase Objects Based on a Biplane Phase Retrieval Method.

Chen Y, Wu X, Chen Y, Lin W, Gu H, Zhang Y Sensors (Basel). 2025; 25(1.

PMID: 39796793 PMC: 11723210. DOI: 10.3390/s25010003.


Spatially-coded Fourier ptychography: flexible and detachable coded thin films for quantitative phase imaging with uniform phase transfer characteristics.

Wang R, Yang L, Lee Y, Sun K, Shen K, Zhao Q Adv Opt Mater. 2024; 12(15).

PMID: 39473443 PMC: 11521390. DOI: 10.1002/adom.202303028.


Lens-free on-chip 3D microscopy based on wavelength-scanning Fourier ptychographic diffraction tomography.

Wu X, Zhou N, Chen Y, Sun J, Lu L, Chen Q Light Sci Appl. 2024; 13(1):237.

PMID: 39237522 PMC: 11377727. DOI: 10.1038/s41377-024-01568-1.


Off-axis digital lensless holographic microscopy based on spatially multiplexed interferometry.

Picazo-Bueno J, Ketelhut S, Schnekenburger J, Mico V, Kemper B J Biomed Opt. 2024; 29(Suppl 2):S22715.

PMID: 39161785 PMC: 11331263. DOI: 10.1117/1.JBO.29.S2.S22715.


References
1.
Xu W, Jericho M, Meinertzhagen I, Kreuzer H . Digital in-line holography for biological applications. Proc Natl Acad Sci U S A. 2001; 98(20):11301-5. PMC: 58724. DOI: 10.1073/pnas.191361398. View

2.
Cuche E, Bevilacqua F, Depeursinge C . Digital holography for quantitative phase-contrast imaging. Opt Lett. 2007; 24(5):291-3. DOI: 10.1364/ol.24.000291. View

3.
Popescu G, DeFlores L, Vaughan J, Badizadegan K, Iwai H, Dasari R . Fourier phase microscopy for investigation of biological structures and dynamics. Opt Lett. 2004; 29(21):2503-5. DOI: 10.1364/ol.29.002503. View

4.
Zhang T, Yamaguchi I . Three-dimensional microscopy with phase-shifting digital holography. Opt Lett. 2007; 23(15):1221-3. DOI: 10.1364/ol.23.001221. View

5.
Hardie R, Barnard K, Armstrong E . Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans Image Process. 1997; 6(12):1621-33. DOI: 10.1109/83.650116. View