» Articles » PMID: 20583274

Data Analysis in Flow Cytometry: the Future Just Started

Overview
Journal Cytometry A
Specialties Cell Biology
Radiology
Date 2010 Jun 29
PMID 20583274
Citations 77
Authors
Affiliations
Soon will be listed here.
Abstract

In the last 10 years, a tremendous progress characterized flow cytometry in its different aspects. In particular, major advances have been conducted regarding the hardware/instrumentation and reagent development, thus allowing fine cell analysis up to 20 parameters. As a result, this technology generates very complex datasets that demand for the development of optimal tools of analysis. Recently, many independent research groups approached the problem by using both supervised and unsupervised methods. In this article, we will review the new developments concerning the use of bioinformatics for polychromatic flow cytometry and propose what should be done to unravel the enormous heterogeneity of the cells we interrogate each day.

Citing Articles

Antitubercular Activity of 7-Methyljuglone-Loaded Poly-(Lactide Co-Glycolide) Nanoparticles.

Diedericks B, Kok A, Mandiwana V, Gordhan B, Kana B, Sinha Ray S Pharmaceutics. 2024; 16(11).

PMID: 39598600 PMC: 11597334. DOI: 10.3390/pharmaceutics16111477.


Brain temperature, brain metabolites, and immune system phenotypes in temporal lobe epilepsy.

Mueller C, Hong H, Sharma A, Qin H, Benveniste E, Szaflarski J Epilepsia Open. 2024; 9(6):2454-2466.

PMID: 39470707 PMC: 11633690. DOI: 10.1002/epi4.13082.


AutoGater: a weakly supervised neural network model to gate cells in flow cytometric analyses.

Eslami M, Moseley R, Eramian H, Bryce D, Haase S Sci Rep. 2024; 14(1):23581.

PMID: 39384769 PMC: 11479614. DOI: 10.1038/s41598-024-66936-8.


Evaluating Strategies to Assess the Differentiation Potential of Human Pluripotent Stem Cells: A Review, Analysis and Call for Innovation.

Smith L, Quelch-Cliffe R, Liu F, Aguilar A, Przyborski S Stem Cell Rev Rep. 2024; 21(1):107-125.

PMID: 39340737 PMC: 11762643. DOI: 10.1007/s12015-024-10793-5.


MetaGate: Interactive analysis of high-dimensional cytometry data with metadata integration.

Ask E, Tschan-Plessl A, Hoel H, Kolstad A, Holte H, Malmberg K Patterns (N Y). 2024; 5(7):100989.

PMID: 39081571 PMC: 11284499. DOI: 10.1016/j.patter.2024.100989.


References
1.
Wilkins M, Hardy S, Boddy L, Morris C . Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data. Cytometry. 2001; 44(3):210-7. DOI: 10.1002/1097-0320(20010701)44:3<210::aid-cyto1113>3.0.co;2-y. View

2.
Bashashati A, Brinkman R . A survey of flow cytometry data analysis methods. Adv Bioinformatics. 2010; :584603. PMC: 2798157. DOI: 10.1155/2009/584603. View

3.
Hofmann M, Zerwes H . Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software. Cytometry A. 2006; 69(6):533-40. DOI: 10.1002/cyto.a.20278. View

4.
Young I . Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J Histochem Cytochem. 1977; 25(7):935-41. DOI: 10.1177/25.7.894009. View

5.
Sachs K, Perez O, Peer D, Lauffenburger D, Nolan G . Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005; 308(5721):523-9. DOI: 10.1126/science.1105809. View