Fine S, Willis K, Lucas I, Siebach K, Glick J, Valentine-Graves M
BMC Public Health. 2025; 25(1):487.
PMID: 39910504
PMC: 11800615.
DOI: 10.1186/s12889-024-21151-y.
Sneijders G, Reitz E, Endendijk J
Arch Sex Behav. 2024; 54(2):641-656.
PMID: 39690346
DOI: 10.1007/s10508-024-03057-3.
Johnson N, Smith R, Kil H
Front Psychol. 2024; 15:1347487.
PMID: 38686088
PMC: 11057496.
DOI: 10.3389/fpsyg.2024.1347487.
Sebille V, Lix L, Ayilara O, Sajobi T, Janssens A, Sawatzky R
Qual Life Res. 2021; 30(12):3325-3342.
PMID: 33595827
PMC: 8602164.
DOI: 10.1007/s11136-020-02755-4.
Zhou M, Long P, Kong N, Campy K
Patient Educ Couns. 2021; 104(8):1868-1877.
PMID: 33390304
PMC: 7836404.
DOI: 10.1016/j.pec.2020.12.020.
Recommendations on the Sample Sizes for Multilevel Latent Class Models.
Park J, Yu H
Educ Psychol Meas. 2020; 78(5):737-761.
PMID: 32655168
PMC: 7328230.
DOI: 10.1177/0013164417719111.
Skew Mixture Latent State-Trait Analysis: A Monte Carlo Simulation Study on Statistical Performance.
Hohmann L, Holtmann J, Eid M
Front Psychol. 2018; 9:1323.
PMID: 30116209
PMC: 6083219.
DOI: 10.3389/fpsyg.2018.01323.
Investigating Approaches to Estimating Covariate Effects in Growth Mixture Modeling: A Simulation Study.
Li M, Harring J
Educ Psychol Meas. 2018; 77(5):766-791.
PMID: 29795930
PMC: 5965629.
DOI: 10.1177/0013164416653789.
Class Enumeration and Parameter Recovery of Growth Mixture Modeling and Second-Order Growth Mixture Modeling in the Presence of Measurement Noninvariance between Latent Classes.
Kim E, Wang Y
Front Psychol. 2017; 8:1499.
PMID: 28928691
PMC: 5591846.
DOI: 10.3389/fpsyg.2017.01499.
Statistical Methods for Latent Class Quantitative Trait Loci Mapping.
Ye S, Bacher R, Keller M, Attie A, Kendziorski C
Genetics. 2017; 206(3):1309-1317.
PMID: 28550015
PMC: 5500132.
DOI: 10.1534/genetics.117.203885.
Fitting latent variable mixture models.
Lubke G, Luningham J
Behav Res Ther. 2017; 98:91-102.
PMID: 28460845
PMC: 5776694.
DOI: 10.1016/j.brat.2017.04.003.
A Note on the Use of Mixture Models for Individual Prediction.
Cole V, Bauer D
Struct Equ Modeling. 2016; 23(4):615-631.
PMID: 27346932
PMC: 4918771.
DOI: 10.1080/10705511.2016.1168266.
Population heterogeneity of trait anger and differential associations of trait anger facets with borderline personality features, neuroticism, depression, Attention Deficit Hyperactivity Disorder (ADHD), and alcohol problems.
Lubke G, Ouwens K, de Moor M, Trull T, Boomsma D
Psychiatry Res. 2015; 230(2):553-60.
PMID: 26454404
PMC: 4655156.
DOI: 10.1016/j.psychres.2015.10.003.
The cusp catastrophe model as cross-sectional and longitudinal mixture structural equation models.
Chow S, Witkiewitz K, Grasman R, Maisto S
Psychol Methods. 2015; 20(1):142-64.
PMID: 25822209
PMC: 4506274.
DOI: 10.1037/a0038962.
Is adding more indicators to a latent class analysis beneficial or detrimental? Results of a Monte-Carlo study.
Wurpts I, Geiser C
Front Psychol. 2014; 5:920.
PMID: 25191298
PMC: 4140387.
DOI: 10.3389/fpsyg.2014.00920.
Does nature have joints worth carving? A discussion of taxometrics, model-based clustering and latent variable mixture modeling.
Lubke G, Miller P
Psychol Med. 2014; 45(4):705-15.
PMID: 25137654
PMC: 4692716.
DOI: 10.1017/S003329171400169X.
Latent Class Detection and Class Assignment: A Comparison of the MAXEIG Taxometric Procedure and Factor Mixture Modeling Approaches.
Lubke G, Tueller S
Struct Equ Modeling. 2014; 17(4):605-628.
PMID: 24648712
PMC: 3955757.
DOI: 10.1080/10705511.2010.510050.
Using mixture models with known class membership to address incomplete covariance structures in multiple-group growth models.
Kim S, Mun E, Smith S
Br J Math Stat Psychol. 2013; 67(1):94-116.
PMID: 23432382
PMC: 3864537.
DOI: 10.1111/bmsp.12008.
Two-part random effects growth modeling to identify risks associated with alcohol and cannabis initiation, initial average use and changes in drug consumption in a sample of adult, male twins.
Gillespie N, Lubke G, Gardner C, Neale M, Kendler K
Drug Alcohol Depend. 2011; 123(1-3):220-8.
PMID: 22177896
PMC: 3442360.
DOI: 10.1016/j.drugalcdep.2011.11.015.
Distinguishing between latent classes and continuous factors with categorical outcomes: Class invariance of parameters of factor mixture models.
Lubke G, Neale M
Multivariate Behav Res. 2010; 43(4):592-620.
PMID: 20165736
PMC: 2629597.
DOI: 10.1080/00273170802490673.