» Articles » PMID: 20576698

HnRNP Q and PTB Modulate the Circadian Oscillation of Mouse Rev-erb Alpha Via IRES-mediated Translation

Overview
Specialty Biochemistry
Date 2010 Jun 26
PMID 20576698
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

The physiological and behavioral circadian rhythms of most creatures are controlled by a harmony of functional relationships between clock genes. In mammals, several core clock genes show rhythmic profiles of their mRNA and protein expression. Among them, Rev-erb α functions as a transcriptional repressor, affecting expression patterns of other clock genes. For the continuous and robust oscillation of the molecular clock system, the levels of Rev-erb α protein are expected to be tightly regulated with the correct timing. Here, we demonstrate that Rev-erb α has an internal ribosomal entry site (IRES) in its 5' untranslated region. Furthermore, we demonstrate that heterogeneous nuclear ribonucleoprotein Q and polypyrimidine tract-binding protein (PTB) modulate the IRES-mediated translation of Rev-erb α. We suggest that the rhythmic binding affinity of hnRNP Q to the Rev-erb α IRES and the change in PTB cytosolic levels lead to maintenance of the oscillation profile of the Rev-erb α protein.

Citing Articles

SYNCRIP promotes cell cycle progression and lung tumorigenesis by modulating AURKB translation.

Kim H, Ryu H, Kang M, Lee N, Kim H, Lee D Cancer Commun (Lond). 2024; 45(2):138-142.

PMID: 39639599 PMC: 11833668. DOI: 10.1002/cac2.12634.


Circadian regulation of translation.

Lyu J, Zhuang Y, Lin Y RNA Biol. 2024; 21(1):14-24.

PMID: 39324589 PMC: 11441039. DOI: 10.1080/15476286.2024.2408524.


Circadian ribosome profiling reveals a role for the upstream open reading frame in sleep.

Millius A, Yamada R, Fujishima H, Maeda K, Standley D, Sumiyama K Proc Natl Acad Sci U S A. 2023; 120(40):e2214636120.

PMID: 37769257 PMC: 10556633. DOI: 10.1073/pnas.2214636120.


A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA.

Qi X, Yan Q, Shang Y, Zhao R, Ding X, Gao S Cell Death Differ. 2022; 29(11):2233-2246.

PMID: 35538151 PMC: 9613757. DOI: 10.1038/s41418-022-01011-1.


CNOT1 regulates circadian behaviour through mRNA decay in a deadenylation-dependent manner.

Mohamed H, Takahashi A, Nishijima S, Adachi S, Murai I, Okamura H RNA Biol. 2022; 19(1):703-718.

PMID: 35510877 PMC: 9090297. DOI: 10.1080/15476286.2022.2071026.


References
1.
Shah O, Anthony J, Kimball S, Jefferson L . 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab. 2000; 279(4):E715-29. DOI: 10.1152/ajpendo.2000.279.4.E715. View

2.
Kim T, Woo K, Cho S, Ha D, Jang S, Kim K . Rhythmic control of AANAT translation by hnRNP Q in circadian melatonin production. Genes Dev. 2007; 21(7):797-810. PMC: 1838531. DOI: 10.1101/gad.1519507. View

3.
Shearman L, Sriram S, Weaver D, Maywood E, Chaves I, Zheng B . Interacting molecular loops in the mammalian circadian clock. Science. 2000; 288(5468):1013-9. DOI: 10.1126/science.288.5468.1013. View

4.
Kondratov R, Chernov M, Kondratova A, Gorbacheva V, Gudkov A, Antoch M . BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 2003; 17(15):1921-32. PMC: 196247. DOI: 10.1101/gad.1099503. View

5.
Ganguly S, Coon S, Klein D . Control of melatonin synthesis in the mammalian pineal gland: the critical role of serotonin acetylation. Cell Tissue Res. 2002; 309(1):127-37. DOI: 10.1007/s00441-002-0579-y. View