» Articles » PMID: 20575520

High Yield Sample Preconcentration Using a Highly Ion-conductive Charge-selective Polymer

Overview
Journal Anal Chem
Specialty Chemistry
Date 2010 Jun 26
PMID 20575520
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The development and analysis of a microfluidic sample preconcentration system using a highly ion-conductive charge-selective polymer [poly-AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid)] is reported. The preconcentration is based on the phenomenon of concentration polarization which develops at the boundaries of the poly-AMPS with buffer solutions. A negatively charged polymer, poly-AMPS, positioned between two microchannels efficiently extracts cations through its large cross section, resulting in efficient anion sample preconcentration. The present work includes the development of a robust polymer that is stable over a wide range of buffers with varying chemical compositions. The sample preconcentration effect remains linear to over 3 mM (0.15 pmol) and 500 microM (15 fmol) for fluorescein and TRITC-tagged albumin solutions, respectively. The system can potentially be used for concentrating proteins on microfluidic devices with subsequent analysis for proteomic applications.

Citing Articles

Designing with Iontronic Logic Gates─From a Single Polyelectrolyte Diode to an Integrated Ionic Circuit.

Sabbagh B, Fraiman N, Fish A, Yossifon G ACS Appl Mater Interfaces. 2023; 15(19):23361-23370.

PMID: 37068481 PMC: 10197067. DOI: 10.1021/acsami.3c00062.


Microvalve-Based Tunability of Electrically Driven Ion Transport through a Microfluidic System with an Ion-Exchange Membrane.

Sabbagh B, Park S, Yossifon G Anal Chem. 2023; 95(16):6514-6522.

PMID: 37039317 PMC: 10134142. DOI: 10.1021/acs.analchem.2c04600.


Computational Design of an Electro-Membrane Microfluidic-Diode System.

Bondarenko M, Yaroshchuk A Membranes (Basel). 2023; 13(2).

PMID: 36837746 PMC: 9959715. DOI: 10.3390/membranes13020243.


Development of a conductivity-based photothermal absorbance detection microchip using polyelectrolytic gel electrodes.

Chun H, Dennis P, Ferguson Welch E, Alarie J, Jorgenson J, Ramsey J J Chromatogr A. 2017; 1523:140-147.

PMID: 28668370 PMC: 5675820. DOI: 10.1016/j.chroma.2017.06.053.


Advances in monoliths and related porous materials for microfluidics.

Knob R, Sahore V, Sonker M, Woolley A Biomicrofluidics. 2016; 10(3):032901.

PMID: 27190564 PMC: 4859832. DOI: 10.1063/1.4948507.


References
1.
Huber D, Manginell R, Samara M, Kim B, Bunker B . Programmed adsorption and release of proteins in a microfluidic device. Science. 2003; 301(5631):352-4. DOI: 10.1126/science.1080759. View

2.
Jung B, Bharadwaj R, Santiago J . Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis. 2003; 24(19-20):3476-83. DOI: 10.1002/elps.200305611. View

3.
Wang Y, Stevens A, Han J . Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem. 2005; 77(14):4293-9. DOI: 10.1021/ac050321z. View

4.
Wen J, Lin Y, Xiang F, Matson D, Udseth H, Smith R . Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry. Electrophoresis. 2000; 21(1):191-7. DOI: 10.1002/(SICI)1522-2683(20000101)21:1<191::AID-ELPS191>3.0.CO;2-M. View

5.
Sera Y, Matsubara N, Otsuka K, Terabe S . Sweeping on a microchip: concentration profiles of the focused zone in micellar electrokinetic chromatography. Electrophoresis. 2001; 22(16):3509-13. DOI: 10.1002/1522-2683(200109)22:16<3509::AID-ELPS3509>3.0.CO;2-Z. View