Kumar N, Jangid K, Kumar V, Devi B, Arora T, Mishra J
RSC Med Chem. 2024; .
PMID: 39399311
PMC: 11462584.
DOI: 10.1039/d4md00550c.
Zueva I, Vasilieva E, Gaynanova G, Moiseenko A, Burtseva A, Boyko K
Int J Mol Sci. 2023; 24(22).
PMID: 38003588
PMC: 10671303.
DOI: 10.3390/ijms242216395.
Vogrinc D, Gregoric Kramberger M, Emersic A, cucnik S, Goricar K, Dolzan V
Int J Mol Sci. 2023; 24(16).
PMID: 37629144
PMC: 10455613.
DOI: 10.3390/ijms241612966.
Waiwut P, Kengkoom K, Pannangrong W, Musigavong N, Chheng C, Plekratoke K
Pharmaceuticals (Basel). 2022; 15(8).
PMID: 36015135
PMC: 9414439.
DOI: 10.3390/ph15080988.
Jean L, Brimijoin S, Vaux D
J Biol Chem. 2019; 294(16):6253-6272.
PMID: 30787102
PMC: 6484111.
DOI: 10.1074/jbc.RA118.006230.
Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble BAβACs.
Kumar R, Nordberg A, Darreh-Shori T
Brain. 2015; 139(Pt 1):174-92.
PMID: 26525916
PMC: 4949388.
DOI: 10.1093/brain/awv318.
Association of and with Alzheimer's disease: Meta-analysis based on 56 genetic case-control studies of 12,563 cases and 12,622 controls.
Ji H, Dai D, Wang Y, Jiang D, Zhou X, Lin P
Exp Ther Med. 2015; 9(5):1831-1840.
PMID: 26136901
PMC: 4471730.
DOI: 10.3892/etm.2015.2327.
Butyrylcholinesterase K variant and Alzheimer's disease risk: a meta-analysis.
Wang Z, Jiang Y, Wang X, Du Y, Xiao D, Deng Y
Med Sci Monit. 2015; 21:1408-13.
PMID: 25978873
PMC: 4444173.
DOI: 10.12659/MSM.892982.
Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease.
Darvesh S, Cash M, Reid G, Martin E, Mitnitski A, Geula C
J Neuropathol Exp Neurol. 2011; 71(1):2-14.
PMID: 22157615
PMC: 3246090.
DOI: 10.1097/NEN.0b013e31823cc7a6.
Biochemical differentiation of cholinesterases from normal and Alzheimer's disease cortex.
Ciro A, Park J, Burkhard G, Yan N, Geula C
Curr Alzheimer Res. 2011; 9(1):138-43.
PMID: 21244353
PMC: 3279606.
DOI: 10.2174/156720512799015127.
The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology.
Podoly E, Shalev D, Shenhar-Tsarfaty S, Bennett E, Ben Assayag E, Wilgus H
J Biol Chem. 2009; 284(25):17170-17179.
PMID: 19383604
PMC: 2719355.
DOI: 10.1074/jbc.M109.004952.
Inclusion body myositis: a view from the Caenorhabditis elegans muscle.
Rebolledo D, Minniti A, Grez P, Fadic R, Kohn R, Inestrosa N
Mol Neurobiol. 2008; 38(2):178-98.
PMID: 18773311
DOI: 10.1007/s12035-008-8041-0.
Genetic risk factors in Alzheimer's disease.
Tilley L, Morgan K, Kalsheker N
Mol Pathol. 1999; 51(6):293-304.
PMID: 10193509
PMC: 395655.
DOI: 10.1136/mp.51.6.293.
Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils.
Alvarez A, Alarcon R, Opazo C, Campos E, Munoz F, Calderon F
J Neurosci. 1998; 18(9):3213-23.
PMID: 9547230
PMC: 6792661.
Colocalization of cholinesterases with beta amyloid protein in aged and Alzheimer's brains.
Moran M, Mufson E, Gomez-Ramos P
Acta Neuropathol. 1993; 85(4):362-9.
PMID: 8480510
DOI: 10.1007/BF00334445.
Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease.
Wright C, Guela C, Mesulam M
Proc Natl Acad Sci U S A. 1993; 90(2):683-6.
PMID: 8421706
PMC: 45728.
DOI: 10.1073/pnas.90.2.683.
Cholinesterases colocalize with sites of neurofibrillary degeneration in aged and Alzheimer's brains.
Moran M, Mufson E, Gomez-Ramos P
Acta Neuropathol. 1994; 87(3):284-92.
PMID: 8009960
DOI: 10.1007/BF00296744.