Logiudice J, Alberti M, Ciccarone A, Rossi B, Tiecco G, De Francesco M
Pathogens. 2025; 14(1).
PMID: 39861024
PMC: 11768692.
DOI: 10.3390/pathogens14010063.
Al-Khafaji S, Panahi M, Baghdadi G, Mehrabi Y, Hashemi S, Delpisheh A
Cureus. 2024; 16(5):e61445.
PMID: 38947724
PMC: 11214775.
DOI: 10.7759/cureus.61445.
Deezsi-Magyar N, Denes B, Novak B, Zsidei G, Deri D, Henczko J
Viruses. 2024; 16(6).
PMID: 38932166
PMC: 11209279.
DOI: 10.3390/v16060875.
Messina J, Wint G
Insects. 2023; 14(9).
PMID: 37754739
PMC: 10532370.
DOI: 10.3390/insects14090771.
Patel A, Dalal Y, Parikh A, Gandhi R, Shah A
Cureus. 2023; 15(8):e43315.
PMID: 37700947
PMC: 10492918.
DOI: 10.7759/cureus.43315.
Quantifying the influence of climate, host and change in land-use patterns on occurrence of Crimean Congo Hemorrhagic Fever (CCHF) and development of spatial risk map for India.
Chanda M, Kharkwal P, Dhuria M, Prajapathi A, Yogisharadhya R, Shome B
One Health. 2023; 17:100609.
PMID: 37583365
PMC: 10424211.
DOI: 10.1016/j.onehlt.2023.100609.
Predicting climate-driven distribution shifts in (Ixodidae).
Hekimoglu O, Elverici C, Kuyucu A
Parasitology. 2023; 150(10):883-893.
PMID: 37519234
PMC: 10577666.
DOI: 10.1017/S0031182023000689.
Multiplex Assay for Simultaneous Detection of Antibodies against Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein and Glycoproteins in Ruminants.
Hoste A, Djadjovski I, Jimenez-Clavero M, Rueda P, Barr J, Sastre P
Microbiol Spectr. 2023; :e0260022.
PMID: 36815788
PMC: 10101078.
DOI: 10.1128/spectrum.02600-22.
An Immunoinformatics Approach to Design a Potent Multi-Epitope Vaccine against Asia-1 Genotype of Crimean-Congo Haemorrhagic Fever Virus Using the Structural Glycoproteins as a Target.
Shah S, Jabbar B, Mirza M, Waqas M, Aziz S, Ahsan Halim S
Vaccines (Basel). 2023; 11(1).
PMID: 36679906
PMC: 9867508.
DOI: 10.3390/vaccines11010061.
Tick-Borne Pathogens and Diseases in Greece.
Efstratiou A, Karanis G, Karanis P
Microorganisms. 2021; 9(8).
PMID: 34442811
PMC: 8399993.
DOI: 10.3390/microorganisms9081732.
Seroepidemiologic Survey of Crimean-Congo Hemorrhagic Fever Virus in Logging Communities, Myanmar.
Evans T, Myat T, Hom N, Ricks K, Maw M, Oo Z
Emerg Infect Dis. 2021; 27(6):1709-1713.
PMID: 34013868
PMC: 8153884.
DOI: 10.3201/eid2706.203223.
Crimean-Congo Hemorrhagic Fever Virus (CCHFV): A Silent but Widespread Threat.
Kuehnert P, Stefan C, Badger C, Ricks K
Curr Trop Med Rep. 2021; 8(2):141-147.
PMID: 33747715
PMC: 7959879.
DOI: 10.1007/s40475-021-00235-4.
The effect of climate variables on the incidence of Crimean Congo Hemorrhagic Fever (CCHF) in Zahedan, Iran.
Nili S, Khanjani N, Jahani Y, Bakhtiari B
BMC Public Health. 2020; 20(1):1893.
PMID: 33298021
PMC: 7726875.
DOI: 10.1186/s12889-020-09989-4.
Emerging Natural Focal Infectious Diseases in Russia: A Medical-Geographical Study.
Malkhazova S, Pestina P, Prasolova A, Orlov D
Int J Environ Res Public Health. 2020; 17(21).
PMID: 33143199
PMC: 7663368.
DOI: 10.3390/ijerph17218005.
Development of a multiplex assay for antibody detection in serum against pathogens affecting ruminants.
Hoste A, Ruiz T, Fernandez-Pacheco P, Jimenez-Clavero M, Djadjovski I, Moreno S
Transbound Emerg Dis. 2020; 68(3):1229-1239.
PMID: 32767820
PMC: 8246919.
DOI: 10.1111/tbed.13776.
Vector-borne diseases and climate change: a European perspective.
Semenza J, Suk J
FEMS Microbiol Lett. 2017; 365(2).
PMID: 29149298
PMC: 5812531.
DOI: 10.1093/femsle/fnx244.
Development of vaccines against Crimean-Congo haemorrhagic fever virus.
Dowall S, Carroll M, Hewson R
Vaccine. 2017; 35(44):6015-6023.
PMID: 28687403
PMC: 5637709.
DOI: 10.1016/j.vaccine.2017.05.031.
Current status of Crimean-Congo haemorrhagic fever in the World Health Organization Eastern Mediterranean Region: issues, challenges, and future directions.
Al-Abri S, Abaidani I, Fazlalipour M, Mostafavi E, Leblebicioglu H, Pshenichnaya N
Int J Infect Dis. 2017; 58:82-89.
PMID: 28259724
PMC: 7110796.
DOI: 10.1016/j.ijid.2017.02.018.
Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle.
Surtees R, Dowall S, Shaw A, Armstrong S, Hewson R, Carroll M
J Virol. 2016; 90(20):9305-16.
PMID: 27512070
PMC: 5044845.
DOI: 10.1128/JVI.00661-16.
Modulation of Potassium Channels Inhibits Bunyavirus Infection.
Hover S, King B, Hall B, Loundras E, Taqi H, Daly J
J Biol Chem. 2015; 291(7):3411-22.
PMID: 26677217
PMC: 4751384.
DOI: 10.1074/jbc.M115.692673.