Xu N, Zuo J, Li C, Gao C, Guo M
Int J Mol Sci. 2024; 25(17).
PMID: 39273268
PMC: 11395192.
DOI: 10.3390/ijms25179321.
Weimer A, Pause L, Ries F, Kohlstedt M, Adrian L, Kromer J
Microb Cell Fact. 2024; 23(1):246.
PMID: 39261865
PMC: 11389600.
DOI: 10.1186/s12934-024-02509-8.
Ding N, Yuan Z, Sun L, Yin L
Molecules. 2024; 29(15).
PMID: 39125091
PMC: 11314019.
DOI: 10.3390/molecules29153687.
de Lorenzo V, Perez-Pantoja D, Nikel P
J Bacteriol. 2024; 206(7):e0013624.
PMID: 38975763
PMC: 11270871.
DOI: 10.1128/jb.00136-24.
Sangtani R, Nogueira R, Yadav A, Kiran B
J Polym Environ. 2023; 31(7):2741-2760.
PMID: 36811096
PMC: 9933833.
DOI: 10.1007/s10924-023-02787-0.
The anoxic electrode-driven fructose catabolism of Pseudomonas putida KT2440.
Nguyen A, Lai B, Adrian L, Kromer J
Microb Biotechnol. 2021; 14(4):1784-1796.
PMID: 34115443
PMC: 8313287.
DOI: 10.1111/1751-7915.13862.
A metabolic and physiological design study of Pseudomonas putida KT2440 capable of anaerobic respiration.
Kampers L, Koehorst J, van Heck R, Suarez-Diez M, Stams A, Schaap P
BMC Microbiol. 2021; 21(1):9.
PMID: 33407113
PMC: 7789669.
DOI: 10.1186/s12866-020-02058-1.
Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates.
Narancic T, Salvador M, Hughes G, Beagan N, Abdulmutalib U, Kenny S
Microb Biotechnol. 2021; 14(6):2463-2480.
PMID: 33404203
PMC: 8601165.
DOI: 10.1111/1751-7915.13712.
Diamine Biosynthesis: Research Progress and Application Prospects.
Wang L, Li G, Deng Y
Appl Environ Microbiol. 2020; 86(23).
PMID: 32978133
PMC: 7657642.
DOI: 10.1128/AEM.01972-20.
Industrial biotechnology of Pseudomonas putida: advances and prospects.
Weimer A, Kohlstedt M, Volke D, Nikel P, Wittmann C
Appl Microbiol Biotechnol. 2020; 104(18):7745-7766.
PMID: 32789744
PMC: 7447670.
DOI: 10.1007/s00253-020-10811-9.
Pseudomonas putida KT2440 is naturally endowed to withstand industrial-scale stress conditions.
Ankenbauer A, Schafer R, Viegas S, Pobre V, Voss B, Arraiano C
Microb Biotechnol. 2020; 13(4):1145-1161.
PMID: 32267616
PMC: 7264900.
DOI: 10.1111/1751-7915.13571.
Large-scale kinetic metabolic models of KT2440 for consistent design of metabolic engineering strategies.
Tokic M, Hatzimanikatis V, Miskovic L
Biotechnol Biofuels. 2020; 13:33.
PMID: 32140178
PMC: 7048048.
DOI: 10.1186/s13068-020-1665-7.
High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities.
Nogales J, Mueller J, Gudmundsson S, Canalejo F, Duque E, Monk J
Environ Microbiol. 2019; 22(1):255-269.
PMID: 31657101
PMC: 7078882.
DOI: 10.1111/1462-2920.14843.
In silico-guided engineering of Pseudomonas putida towards growth under micro-oxic conditions.
Kampers L, van Heck R, Donati S, Saccenti E, Volkers R, Schaap P
Microb Cell Fact. 2019; 18(1):179.
PMID: 31640713
PMC: 6805499.
DOI: 10.1186/s12934-019-1227-5.
Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production.
Yang J, Son J, Kim H, Cho S, Na J, Yeon Y
Microb Cell Fact. 2019; 18(1):168.
PMID: 31601210
PMC: 6786281.
DOI: 10.1186/s12934-019-1213-y.
Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species.
Poblete-Castro I, Wittmann C, Nikel P
Microb Biotechnol. 2019; 13(1):32-53.
PMID: 30883020
PMC: 6922529.
DOI: 10.1111/1751-7915.13400.
CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440.
Kim S, Yoon P, Kim S, Woo S, Rha E, Lee H
Microb Biotechnol. 2019; 13(1):210-221.
PMID: 30793496
PMC: 6922533.
DOI: 10.1111/1751-7915.13382.
Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms.
Calero P, Nikel P
Microb Biotechnol. 2018; 12(1):98-124.
PMID: 29926529
PMC: 6302729.
DOI: 10.1111/1751-7915.13292.
A efflux pump acts on short-chain alcohols.
Basler G, Thompson M, Tullman-Ercek D, Keasling J
Biotechnol Biofuels. 2018; 11:136.
PMID: 29760777
PMC: 5946390.
DOI: 10.1186/s13068-018-1133-9.
Systems Biology Approach to Bioremediation of Nitroaromatics: Constraint-Based Analysis of 2,4,6-Trinitrotoluene Biotransformation by Escherichia coli.
Iman M, Sobati T, Panahi Y, Mobasheri M
Molecules. 2017; 22(8).
PMID: 28805729
PMC: 6152126.
DOI: 10.3390/molecules22081242.