» Articles » PMID: 20511586

The Archaeo-eukaryotic Primase of Plasmid PRN1 Requires a Helix Bundle Domain for Faithful Primer Synthesis

Overview
Specialty Biochemistry
Date 2010 Jun 1
PMID 20511586
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

The plasmid pRN1 encodes for a multifunctional replication protein with primase, DNA polymerase and helicase activity. The minimal region required for primase activity encompasses amino-acid residues 40-370. While the N-terminal part of that minimal region (residues 47-247) folds into the prim/pol domain and bears the active site, the structure and function of the C-terminal part (residues 248-370) is unknown. Here we show that the C-terminal part of the minimal region folds into a compact domain with six helices and is stabilized by a disulfide bond. Three helices superimpose well with the C-terminal domain of the primase of the bacterial broad host range plasmid RSF1010. Structure-based site-directed mutagenesis shows that the C-terminal helix of the helix bundle domain is required for primase activity although it is distant to the active site in the crystallized conformation. Furthermore, we identified mutants of the C-terminal domain, which are defective in template binding, dinucleotide formation and conformation change prior to DNA extension.

Citing Articles

Rational design of unrestricted pRN1 derivatives and their application in the construction of a dual plasmid vector system for .

Zhao P, Bi X, Wang X, Feng X, Shen Y, Yuan G mLife. 2024; 3(1):119-128.

PMID: 38827506 PMC: 11139203. DOI: 10.1002/mlf2.12107.


Initial Primer Synthesis of a DNA Primase Monitored by Real-Time NMR Spectroscopy.

Wu P, Zehnder J, Schroder N, Blummel P, Salmon L, Damberger F J Am Chem Soc. 2024; 146(14):9583-9596.

PMID: 38538061 PMC: 11009956. DOI: 10.1021/jacs.3c11836.


Molecular basis for the initiation of DNA primer synthesis.

Li A, Zabrady K, Bainbridge L, Zabrady M, Naseem-Khan S, Berger M Nature. 2022; 605(7911):767-773.

PMID: 35508653 PMC: 9149119. DOI: 10.1038/s41586-022-04695-0.


Molecular Dissection of the Primase and Polymerase Activities of Deep-Sea Phage NrS-1 Primase-Polymerase.

Huang F, Lu X, Yu C, Sliz P, Wang L, Zhu B Front Microbiol. 2022; 12:766612.

PMID: 34975792 PMC: 8718748. DOI: 10.3389/fmicb.2021.766612.


Stringent Primer Termination by an Archaeo-Eukaryotic DNA Primase.

Bergsch J, Devillier J, Jeschke G, Lipps G Front Microbiol. 2021; 12:652928.

PMID: 33927705 PMC: 8076596. DOI: 10.3389/fmicb.2021.652928.


References
1.
Lipps G, Weinzierl A, von Scheven G, Buchen C, Cramer P . Structure of a bifunctional DNA primase-polymerase. Nat Struct Mol Biol. 2004; 11(2):157-62. DOI: 10.1038/nsmb723. View

2.
Navaza J . Implementation of molecular replacement in AMoRe. Acta Crystallogr D Biol Crystallogr. 2001; 57(Pt 10):1367-72. DOI: 10.1107/s0907444901012422. View

3.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

4.
Ito N, Nureki O, Shirouzu M, Yokoyama S, Hanaoka F . Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis. Genes Cells. 2004; 8(12):913-23. DOI: 10.1111/j.1365-2443.2003.00693.x. View

5.
Augustin M, Huber R, Kaiser J . Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Biol. 2001; 8(1):57-61. DOI: 10.1038/83060. View