» Articles » PMID: 20504804

Concentration Dependence of Lipopolymer Self-diffusion in Supported Bilayer Membranes

Overview
Date 2010 May 28
PMID 20504804
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction-diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient D(s) at concentrations in the range c ≈ 0.5-5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation D(s) = D(0)/(1 + αc), where D(0) ≈ 3.36 µm(2) s(-1) and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar-Abney-Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius a(e) ≈ 2.41 nm. On the other hand, the Bussell-Koch-Hammer theory, which includes hydrodynamic interactions, yields a(e) ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, R(F) ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, a(l) ≈ 0.46 nm. The diffusion coefficient at infinite dilution D(0) was interpreted using the Evans-Sackmann theory, furnishing an inter-leaflet frictional drag coefficient b(s) ≈ 1.33 × 10(8) N s m(-3). Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics.

Citing Articles

Impact of poly(ethylene glycol) functionalized lipids on ordering and fluidity of colloid supported lipid bilayers.

Giakoumatos E, Gascoigne L, Gumi-Audenis B, Garcia A, Tuinier R, Voets I Soft Matter. 2022; 18(39):7569-7578.

PMID: 36165127 PMC: 9555145. DOI: 10.1039/d2sm00806h.


Recent Advances in Fluorescence Recovery after Photobleaching for Decoupling Transport and Kinetics of Biomacromolecules in Cellular Physiology.

Cai N, Lai A, Liao K, Corridon P, Graves D, Chan V Polymers (Basel). 2022; 14(9).

PMID: 35567083 PMC: 9105003. DOI: 10.3390/polym14091913.


Transmembrane protein diffusion in gel-supported dual-leaflet membranes.

Wang C, Hill R Biophys J. 2014; 107(10):2296-304.

PMID: 25418298 PMC: 4241462. DOI: 10.1016/j.bpj.2014.10.016.


Uptake and transfection efficiency of PEGylated cationic liposome-DNA complexes with and without RGD-tagging.

Majzoub R, Chan C, Ewert K, Silva B, Liang K, Jacovetty E Biomaterials. 2014; 35(18):4996-5005.

PMID: 24661552 PMC: 4032065. DOI: 10.1016/j.biomaterials.2014.03.007.


Lipopolymer gradient diffusion in supported bilayer membranes.

Zhang H, Hill R J R Soc Interface. 2010; 8(56):312-21.

PMID: 20702448 PMC: 3030823. DOI: 10.1098/rsif.2010.0352.

References
1.
Ellenberg J, Siggia E, Moreira J, Smith C, Presley J, Worman H . Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol. 1997; 138(6):1193-206. PMC: 2132565. DOI: 10.1083/jcb.138.6.1193. View

2.
Allen T, Hansen C, Martin F, Redemann C . Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1991; 1066(1):29-36. DOI: 10.1016/0005-2736(91)90246-5. View

3.
Chen Y, Lagerholm B, Yang B, Jacobson K . Methods to measure the lateral diffusion of membrane lipids and proteins. Methods. 2006; 39(2):147-53. DOI: 10.1016/j.ymeth.2006.05.008. View

4.
Mueller F, Wach P, McNally J . Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys J. 2008; 94(8):3323-39. PMC: 2275703. DOI: 10.1529/biophysj.107.123182. View

5.
Lippincott-Schwartz J, Altan-Bonnet N, Patterson G . Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol. 2003; Suppl:S7-14. View