» Articles » PMID: 20501839

Notch Signaling Determines the M1 Versus M2 Polarization of Macrophages in Antitumor Immune Responses

Overview
Journal Cancer Res
Specialty Oncology
Date 2010 May 27
PMID 20501839
Citations 229
Authors
Affiliations
Soon will be listed here.
Abstract

Macrophages are important tumor-infiltrating cells and play pivotal roles in tumor growth and metastasis. Macrophages participate in immune responses to tumors in a polarized manner: classic M1 macrophages produce interleukin (IL) 12 to promote tumoricidal responses, whereas M2 macrophages produce IL10 and help tumor progression. The mechanisms governing macrophage polarization are unclear. Here, we show that the M2-like tumor-associated macrophages (TAM) have a lower level of Notch pathway activation in mouse tumor models. Forced activation of Notch signaling increased M1 macrophages which produce IL12, no matter whether M1 or M2 inducers were applied. When Notch signaling was blocked, the M1 inducers induced M2 response in the expense of M1. Macrophages deficient in canonical Notch signaling showed TAM phenotypes. Forced activation of Notch signaling in macrophages enhanced their antitumor capacity. We further show that RBP-J-mediated Notch signaling regulates the M1 versus M2 polarization through SOCS3. Therefore, Notch signaling plays critical roles in the determination of M1 versus M2 polarization of macrophages, and compromised Notch pathway activation will lead to the M2-like TAMs. These results provide new insights into the molecular mechanisms of macrophage polarization and shed light on new therapies for cancers through the modulation of macrophage polarization through the Notch signaling.

Citing Articles

Notch signaling in the tumor immune microenvironment of colorectal cancer: mechanisms and therapeutic opportunities.

Sun J, Chen Y, Xu Z, Wang W, Li P J Transl Med. 2025; 23(1):315.

PMID: 40075484 PMC: 11900264. DOI: 10.1186/s12967-025-06282-z.


Notch Signaling and PD-1/PD-L1 Interaction in Hepatocellular Carcinoma: Potentialities of Combined Therapies.

Montagner A, Arleo A, Suzzi F, DAssoro A, Piscaglia F, Gramantieri L Biomolecules. 2025; 14(12.

PMID: 39766289 PMC: 11674819. DOI: 10.3390/biom14121581.


Macrophages in Calcific Aortic Valve Disease: Paracrine and Juxtacrine Disease Drivers.

Klauzen P, Basovich L, Shishkova D, Markova V, Malashicheva A Biomolecules. 2025; 14(12.

PMID: 39766254 PMC: 11673549. DOI: 10.3390/biom14121547.


Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review.

Serrano Garcia L, Javega B, Llombart Cussac A, Gion M, Perez-Garcia J, Cortes J Front Immunol. 2024; 15:1513421.

PMID: 39735530 PMC: 11671371. DOI: 10.3389/fimmu.2024.1513421.


Notch signaling regulates pulmonary fibrosis.

Zhang X, Xu Z, Chen Q, Zhou Z Front Cell Dev Biol. 2024; 12:1450038.

PMID: 39450276 PMC: 11499121. DOI: 10.3389/fcell.2024.1450038.