» Articles » PMID: 20494975

Perturbations in Nucleosome Structure from Heavy Metal Association

Overview
Specialty Biochemistry
Date 2010 May 25
PMID 20494975
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Heavy metals have the potential to engage in strong bonding interactions and can thus function in essential as well as toxic or therapeutic capacities. We conducted crystallographic analyses of heavy cation binding to the nucleosome core particle and found that Co(2+) and Ni(2+) preferentially associate with the DNA major groove, in a sequence- and conformation-dependent manner. Conversely, Rb(+) and Cs(+) are found to bind only opportunistically to minor groove elements of the DNA, in particular at narrow AT dinucleotide sites. Furthermore, relative to Mn(2+) the aggressive coordination of Co(2+) and Ni(2+) to guanine bases is observed to induce a shift in histone-DNA register around the nucleosome center by stabilizing DNA stretching over one region accompanied by expulsion of two bases at an opposing location. These 'softer' transition metals also associate with multiple histone protein sites, including inter-nucleosomal cross-linking, and display a proclivity for coordination to histidine. Sustained binding and the ability to induce structural perturbations at specific locations in the nucleosome may contribute to genetic and epigenetic mechanisms of carcinogenesis mediated by Co(2+) and Ni(2+).

Citing Articles

Dichloro Ru(II)--cymene-1,3,5-triaza-7-phosphaadamantane (RAPTA-C): A Case Study.

Swaminathan S, Karvembu R ACS Pharmacol Transl Sci. 2023; 6(7):982-996.

PMID: 37470017 PMC: 10353064. DOI: 10.1021/acsptsci.3c00085.


Force-Field-Dependent DNA Breathing Dynamics: A Case Study of Hoogsteen Base Pairing in A6-DNA.

Stone S, Ray D, Andricioaei I J Chem Inf Model. 2022; 62(24):6749-6761.

PMID: 36049242 PMC: 9795553. DOI: 10.1021/acs.jcim.2c00519.


Simultaneous mass spectrometry analysis of cisplatin with oligonucleotide-peptide mixtures: implications for the mechanism of action.

Mansouri F, Patiny L, Ortiz D, Menin L, Davey C, Mohammadi F J Biol Inorg Chem. 2022; 27(2):239-248.

PMID: 35064831 PMC: 8907109. DOI: 10.1007/s00775-022-01924-9.


DNA methylation changes induced by prenatal toxic metal exposure: An overview of epidemiological evidence.

Vaiserman A, Lushchak O Environ Epigenet. 2021; 7(1):dvab007.

PMID: 34631153 PMC: 8493661. DOI: 10.1093/eep/dvab007.


Free Energy Landscape and Conformational Kinetics of Hoogsteen Base Pairing in DNA vs. RNA.

Ray D, Andricioaei I Biophys J. 2020; 119(8):1568-1579.

PMID: 32946766 PMC: 7642241. DOI: 10.1016/j.bpj.2020.08.031.


References
1.
Chiu T, DICKERSON R . 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J Mol Biol. 2000; 301(4):915-45. DOI: 10.1006/jmbi.2000.4012. View

2.
Zoroddu M, Schinocca L, Kowalik-Jankowska T, Kozlowski H, Salnikow K, Costa M . Molecular mechanisms in nickel carcinogenesis: modeling Ni(II) binding site in histone H4. Environ Health Perspect. 2002; 110 Suppl 5:719-23. PMC: 1241232. DOI: 10.1289/ehp.02110s5719. View

3.
Arita A, Costa M . Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics. 2010; 1(3):222-8. PMC: 2866119. DOI: 10.1039/b903049b. View

4.
Fernandez A, Anderson J . Nucleosome positioning determinants. J Mol Biol. 2007; 371(3):649-68. DOI: 10.1016/j.jmb.2007.05.090. View

5.
Wu B, Droge P, Davey C . Site selectivity of platinum anticancer therapeutics. Nat Chem Biol. 2007; 4(2):110-2. DOI: 10.1038/nchembio.2007.58. View