» Articles » PMID: 20493822

Caffeine Modulates CREB-dependent Gene Expression in Developing Cortical Neurons

Overview
Publisher Elsevier
Specialty Biochemistry
Date 2010 May 25
PMID 20493822
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The Ca(2+)/cAMP response element binding protein CREB mediates transcription of genes essential for the development and function of the central nervous system. Here we investigated the ability of caffeine to stimulate CREB-dependent gene transcription in primary cultures of developing mouse cortical neurons. Using the CREB-dependent reporter gene CRE-luciferase we show that stimulation of CREB activity by caffeine exhibits a bell-shaped dose-response curve. Maximal stimulation occurred at 10mM caffeine, which is known to release Ca(2+) from ryanodine sensitive internal stores. In our immature neuronal cultures, 10mM caffeine was more effective at stimulating CREB activity than depolarization with high extracellular KCl (50mM). Quantitative real-time PCR analysis demonstrated that transcripts derived from endogenous CREB target genes, such as the gene encoding brain-derived neurotrophic factor BDNF, are increased following caffeine treatment. The dose-response curves of CREB target genes to caffeine exhibited gene-specificity, highlighting the importance of promoter structure in shaping genomic responses to Ca(2+) signaling. In the presence of a weak depolarizing stimulus (10mM KCl), concentrations of caffeine relevant for premature infants undergoing caffeine treatment increased CRE-luciferase activity and Bdnf transcript levels. The ability of caffeine to enhance activity-dependent Bdnf expression may contribute to the neurological benefit observed in infants receiving caffeine treatment.

Citing Articles

Gene×environment interactions in autism spectrum disorders.

Keil-Stietz K, Lein P Curr Top Dev Biol. 2023; 152:221-284.

PMID: 36707213 PMC: 10496028. DOI: 10.1016/bs.ctdb.2022.11.001.


Caffeine improves mitochondrial function in PINK1-null mutant Drosophila melanogaster.

Goncalves D, Senger L, Foletto J, Michelotti P, Soares F, Dalla Corte C J Bioenerg Biomembr. 2022; 55(1):1-13.

PMID: 36494592 DOI: 10.1007/s10863-022-09952-5.


Understanding Acquired Brain Injury: A Review.

Goldman L, Siddiqui E, Khan A, Jahan S, Rehman M, Mehan S Biomedicines. 2022; 10(9).

PMID: 36140268 PMC: 9496189. DOI: 10.3390/biomedicines10092167.


Encephalopathy in Preterm Infants: Advances in Neuroprotection With Caffeine.

Yang L, Yu X, Zhang Y, Liu N, Xue X, Fu J Front Pediatr. 2021; 9:724161.

PMID: 34660486 PMC: 8517339. DOI: 10.3389/fped.2021.724161.


Experimental study of pre- and postnatal caffeine exposure and its observable effects on selected neurotransmitters and behavioural attributes at puberty : Caffeine exposure and its observable effects on selected neurotranmitters and behaviour.

Owolabi J, Adefule K, Shallie P, Fabiyi O, Olatunji S, Olanrewaju J Metab Brain Dis. 2021; 36(7):2029-2046.

PMID: 34460045 DOI: 10.1007/s11011-021-00829-x.


References
1.
Fredholm B, BATTIG K, Holmen J, Nehlig A, Zvartau E . Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999; 51(1):83-133. View

2.
Shieh P, Hu S, Bobb K, Timmusk T, Ghosh A . Identification of a signaling pathway involved in calcium regulation of BDNF expression. Neuron. 1998; 20(4):727-40. DOI: 10.1016/s0896-6273(00)81011-9. View

3.
Davis P, Schmidt B, Roberts R, Doyle L, Asztalos E, Haslam R . Caffeine for Apnea of Prematurity trial: benefits may vary in subgroups. J Pediatr. 2009; 156(3):382-7. DOI: 10.1016/j.jpeds.2009.09.069. View

4.
Parsons W, NEIMS A . Prolonged half-life of caffeine in healthy tem newborn infants. J Pediatr. 1981; 98(4):640-1. DOI: 10.1016/s0022-3476(81)80784-6. View

5.
Kingsbury T, Murray P, Bambrick L, Krueger B . Ca(2+)-dependent regulation of TrkB expression in neurons. J Biol Chem. 2003; 278(42):40744-8. DOI: 10.1074/jbc.M303082200. View