» Articles » PMID: 20436476

Transient Cold Shock Enhances Zinc-finger Nuclease-mediated Gene Disruption

Overview
Journal Nat Methods
Date 2010 May 4
PMID 20436476
Citations 94
Authors
Affiliations
Soon will be listed here.
Abstract

Zinc-finger nucleases (ZFNs) are powerful tools for editing the genomes of cell lines and model organisms. Given the breadth of their potential application, simple methods that increase ZFN activity, thus ensuring genome modification, are highly attractive. Here we show that transient hypothermia generally and robustly increased the level of stable, ZFN-induced gene disruption, thereby providing a simple technique to enhance the experimental efficacy of ZFNs.

Citing Articles

Increasing Knockin Efficiency in Mouse Zygotes by Transient Hypothermia.

Bouchareb A, Biggs D, Alghadban S, Preece C, Davies B CRISPR J. 2024; 7(2):111-119.

PMID: 38635329 PMC: 7615915. DOI: 10.1089/crispr.2023.0077.


Engineering of Zinc Finger Nucleases Through Structural Modeling Improves Genome Editing Efficiency in Cells.

Katayama S, Watanabe M, Kato Y, Nomura W, Yamamoto T Adv Sci (Weinh). 2024; 11(23):e2310255.

PMID: 38600709 PMC: 11187957. DOI: 10.1002/advs.202310255.


Chronic Hepatitis B Infection: New Approaches towards Cure.

Ogunnaike M, Das S, Raut S, Sultana A, Nayan M, Ganesan M Biomolecules. 2023; 13(8).

PMID: 37627273 PMC: 10452112. DOI: 10.3390/biom13081208.


A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells.

Cuevas-Ocana S, Yang J, Aushev M, Schlossmacher G, Bear C, Hannan N Int J Mol Sci. 2023; 24(12).

PMID: 37373413 PMC: 10299534. DOI: 10.3390/ijms241210266.


Reducing the inherent auto-inhibitory interaction within the pegRNA enhances prime editing efficiency.

Ponnienselvan K, Liu P, Nyalile T, Oikemus S, Maitland S, Lawson N Nucleic Acids Res. 2023; 51(13):6966-6980.

PMID: 37246708 PMC: 10359601. DOI: 10.1093/nar/gkad456.


References
1.
Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T . Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One. 2010; 5(1):e8870. PMC: 2810328. DOI: 10.1371/journal.pone.0008870. View

2.
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver R . Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009; 27(9):851-7. PMC: 4142824. DOI: 10.1038/nbt.1562. View

3.
Roobol A, Carden M, Newsam R, Smales C . Biochemical insights into the mechanisms central to the response of mammalian cells to cold stress and subsequent rewarming. FEBS J. 2008; 276(1):286-302. DOI: 10.1111/j.1742-4658.2008.06781.x. View

4.
Szczepek M, Brondani V, Buchel J, Serrano L, Segal D, Cathomen T . Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 2007; 25(7):786-93. DOI: 10.1038/nbt1317. View

5.
Foley J, Yeh J, Maeder M, Reyon D, Sander J, Peterson R . Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One. 2009; 4(2):e4348. PMC: 2634973. DOI: 10.1371/journal.pone.0004348. View