» Articles » PMID: 20434356

Neonatal Diabetes Mellitus: a Model for Personalized Medicine

Overview
Specialty Endocrinology
Date 2010 May 4
PMID 20434356
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Neonatal diabetes mellitus occurs in approximately 1 out of every 100,000 live births. It can be either permanent or transient, and recent studies indicate that is likely to have an underlying genetic cause, particularly when diagnosed before 6 months of age. Permanent neonatal diabetes is most commonly due to activating mutations in either of the genes encoding the two subunits of the ATP-sensitive potassium channel. In most of these patients, switching from insulin to oral sulfonylurea therapy leads to improved metabolic control, as well as possible amelioration of occasional associated neurodevelopmental disabilities. It remains to be determined what is the most appropriate treatment of other causes. The diagnosis and treatment of neonatal diabetes, therefore, represents a model for personalized medicine.

Citing Articles

Diagnosis and Treatment of Neonatal Diabetes Caused by ATP-Channel Mutations: Genetic Insights, Sulfonylurea Therapy, and Future Directions.

Trada M, Novara C, Moretto M, Burzi E, Tinti D, de Sanctis L Children (Basel). 2025; 12(2).

PMID: 40003320 PMC: 11854417. DOI: 10.3390/children12020219.


What Do We Know about Neonatal Diabetes caused by Mutations?.

de Souza R, Cabello P, Lopes Rosado E, Junior M, Abreu G Curr Diabetes Rev. 2024; 21(1):e290124226471.

PMID: 38299270 DOI: 10.2174/0115733998265866231204070606.


Exploring the Diet-Gut Microbiota-Epigenetics Crosstalk Relevant to Neonatal Diabetes.

Alsharairi N Genes (Basel). 2023; 14(5).

PMID: 37239377 PMC: 10218220. DOI: 10.3390/genes14051017.


ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents.

Greeley S, Polak M, Njolstad P, Barbetti F, Williams R, Castano L Pediatr Diabetes. 2022; 23(8):1188-1211.

PMID: 36537518 PMC: 10107883. DOI: 10.1111/pedi.13426.


Genome Editing and Human Pluripotent Stem Cell Technologies for in vitro Monogenic Diabetes Modeling.

Dabi Y, Degechisa S Diabetes Metab Syndr Obes. 2022; 15:1785-1797.

PMID: 35719247 PMC: 9199525. DOI: 10.2147/DMSO.S366967.


References
1.
Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Krippeit-Drews P . ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch. 2006; 453(5):703-18. DOI: 10.1007/s00424-006-0116-z. View

2.
Steiner D, Park S, Stoy J, Philipson L, Bell G . A brief perspective on insulin production. Diabetes Obes Metab. 2009; 11 Suppl 4:189-96. DOI: 10.1111/j.1463-1326.2009.01106.x. View

3.
de Wet H, Proks P, Lafond M, Aittoniemi J, Sansom M, Flanagan S . A mutation (R826W) in nucleotide-binding domain 1 of ABCC8 reduces ATPase activity and causes transient neonatal diabetes. EMBO Rep. 2008; 9(7):648-54. PMC: 2475326. DOI: 10.1038/embor.2008.71. View

4.
Yorifuji T, Kurokawa K, Mamada M, Imai T, Kawai M, Nishi Y . Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: Phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germline mosaicism. J Clin Endocrinol Metab. 2004; 89(6):2905-8. DOI: 10.1210/jc.2003-031828. View

5.
Marquis E, Le Monnier de Gouville I, Bouvattier C, Robert J, Junien C, Charron D . HLA-DRB1 and DQB1 genotypes in patients with insulin-dependent neonatal diabetes mellitus. A study of 13 cases. Tissue Antigens. 2000; 56(3):217-22. DOI: 10.1034/j.1399-0039.2000.560303.x. View