» Articles » PMID: 20421693

Calcium and Mitochondrial Reactive Oxygen Species Generation: How to Read the Facts

Overview
Publisher Sage Publications
Specialties Geriatrics
Neurology
Date 2010 Apr 28
PMID 20421693
Citations 107
Authors
Affiliations
Soon will be listed here.
Abstract

A number of recent discoveries indicate that abnormal Ca2+ signaling, oxidative stress, and mitochondrial dysfunction are involved in the neuronal damage in Alzheimer's disease. However, the literature on the interactions between these factors is controversial especially in the interpretation of the cause-effect relationship between mitochondrial damage induced by Ca2+ overload and the production of reactive oxygen species (ROS). In this review, we survey the experimental observations on the Ca2+-induced mitochondrial ROS production, explain the sources of controversy in interpreting these results, and discuss the different molecular mechanisms underlying the effect of Ca2+ on the ROS emission by brain mitochondria.

Citing Articles

Quantitative, real-time imaging of spreading depolarization-associated neuronal ROS production.

Ackermann M, Buchholz S, Dietrich K, Muller M Front Cell Neurosci. 2024; 18:1465531.

PMID: 39473491 PMC: 11519816. DOI: 10.3389/fncel.2024.1465531.


Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease.

Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L Subcell Biochem. 2024; 104:295-381.

PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13.


Calcium Dyshomeostasis Drives Pathophysiology and Neuronal Demise in Age-Related Neurodegenerative Diseases.

Griffioen G Int J Mol Sci. 2023; 24(17).

PMID: 37686048 PMC: 10487569. DOI: 10.3390/ijms241713243.


Doped Graphene Quantum Dots as Biocompatible Radical Scavenging Agents.

Bhaloo A, Nguyen S, Lee B, Valimukhametova A, Gonzalez-Rodriguez R, Sottile O Antioxidants (Basel). 2023; 12(8).

PMID: 37627531 PMC: 10451549. DOI: 10.3390/antiox12081536.


Post-Translational Modification of Cysteines: A Key Determinant of Endoplasmic Reticulum-Mitochondria Contacts (MERCs).

Bassot A, Chen J, Simmen T Contact (Thousand Oaks). 2023; 4:25152564211001213.

PMID: 37366382 PMC: 10243593. DOI: 10.1177/25152564211001213.


References
1.
Calingasan N, Chun W, PARK L, Uchida K, Gibson G . Oxidative stress is associated with region-specific neuronal death during thiamine deficiency. J Neuropathol Exp Neurol. 1999; 58(9):946-58. DOI: 10.1097/00005072-199909000-00005. View

2.
Halestrap A, Kerr P, Javadov S, Woodfield K . Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta. 1998; 1366(1-2):79-94. DOI: 10.1016/s0005-2728(98)00122-4. View

3.
Kussmaul L, Hirst J . The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A. 2006; 103(20):7607-12. PMC: 1472492. DOI: 10.1073/pnas.0510977103. View

4.
Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre J, Rosenfeld J . Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol. 2006; 292(2):C708-18. DOI: 10.1152/ajpcell.00202.2006. View

5.
Dykens J . Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J Neurochem. 1994; 63(2):584-91. DOI: 10.1046/j.1471-4159.1994.63020584.x. View