» Articles » PMID: 20416044

Systematic Calibration of a Cell Signaling Network Model

Overview
Publisher Biomed Central
Specialty Biology
Date 2010 Apr 27
PMID 20416044
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Mathematical modeling is being applied to increasingly complex biological systems and datasets; however, the process of analyzing and calibrating against experimental data is often challenging and a rate limiting step in model development. To address this problem, we developed a systematic methodology for calibrating quantitative models of dynamic biological processes and illustrate its utility by validating a model of TRAIL (Tumor necrosis factor Related Apoptosis-Inducing Ligand)-induced cell death.

Results: We propose a serial framework integrating analysis and calibration modules and we compare various methods for global sensitivity analysis and global parameter estimation. First, adequacy of the network structure is checked by global sensitivity analysis to changes in concentrations of molecular species, validating that the model can reproduce qualitative features of the system behavior derived from experiments or literature surveys. Second, rate parameters are ranked by importance using gradient-based and variance-based sensitivity indices, and we systematically determine the optimal number of parameters to include in model calibration. Third, deterministic, stochastic and hybrid algorithms for global optimization are applied to estimate the values of the most important parameters by fitting to time series data. We compare the performance of these three optimization algorithms.

Conclusions: Our proposed framework covers the entire process from validating a proto-model to establishing a realistic model for in silico experiments and thereby provides a generalized workflow for the construction of predictive models of complex network systems.

Citing Articles

Numerical and computational analysis on a dissipative dynamical system: Slow invariant manifold for complex chemical mechanism.

Xin X, Sultan F, Yaseen M, Sherif E, Ishaq M Heliyon. 2024; 10(16):e35693.

PMID: 39220925 PMC: 11363847. DOI: 10.1016/j.heliyon.2024.e35693.


Network-driven cancer cell avatars for combination discovery and biomarker identification for DNA damage response inhibitors.

Papp O, Jordan V, Hetey S, Balazs R, Kaszas V, Bartha A NPJ Syst Biol Appl. 2024; 10(1):68.

PMID: 38906870 PMC: 11192759. DOI: 10.1038/s41540-024-00394-w.


Dynamics and Sensitivity of Signaling Pathways.

Kochen M, Andrews S, Wiley H, Feng S, Sauro H Curr Pathobiol Rep. 2023; 10(2):11-22.

PMID: 36969954 PMC: 10035447. DOI: 10.1007/s40139-022-00230-y.


Hip osteoarthritis: A novel network analysis of subchondral trabecular bone structures.

Dorraki M, Muratovic D, Fouladzadeh A, Verjans J, Allison A, Findlay D PNAS Nexus. 2023; 1(5):pgac258.

PMID: 36712355 PMC: 9802325. DOI: 10.1093/pnasnexus/pgac258.


Petri nets and ODEs as complementary methods for comprehensive analysis on an example of the ATM-p53-NF-[Formula: see text]B signaling pathways.

Gutowska K, Kogut D, Kardynska M, Formanowicz P, Smieja J, Puszynski K Sci Rep. 2022; 12(1):1135.

PMID: 35064163 PMC: 8782877. DOI: 10.1038/s41598-022-04849-0.


References
1.
Mendes P, Kell D . Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics. 1999; 14(10):869-83. DOI: 10.1093/bioinformatics/14.10.869. View

2.
Bentele M, Lavrik I, Ulrich M, Stosser S, Heermann D, Kalthoff H . Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol. 2004; 166(6):839-51. PMC: 2172102. DOI: 10.1083/jcb.200404158. View

3.
Moles C, Mendes P, Banga J . Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 2003; 13(11):2467-74. PMC: 403766. DOI: 10.1101/gr.1262503. View

4.
Albeck J, Burke J, Spencer S, Lauffenburger D, Sorger P . Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol. 2008; 6(12):2831-52. PMC: 2592357. DOI: 10.1371/journal.pbio.0060299. View

5.
Zhang Y, Rundell A . Comparative study of parameter sensitivity analyses of the TCR-activated Erk-MAPK signalling pathway. Syst Biol (Stevenage). 2006; 153(4):201-11. DOI: 10.1049/ip-syb:20050088. View