» Articles » PMID: 20398211

Translocation of Borrelia Burgdorferi Surface Lipoprotein OspA Through the Outer Membrane Requires an Unfolded Conformation and Can Initiate at the C-terminus

Overview
Journal Mol Microbiol
Date 2010 Apr 20
PMID 20398211
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Borrelia burgdorferi surface lipoproteins are essential to the pathogenesis of Lyme borreliosis, but the mechanisms responsible for their localization are only beginning to emerge. We have previously demonstrated the critical nature of the amino-terminal 'tether' domain of the mature lipoprotein for sorting a fluorescent reporter to the Borrelia cell surface. Here, we show that individual deletion of four contiguous residues within the tether of major surface lipoprotein OspA results in its inefficient translocation across the Borrelia outer membrane. Intriguingly, C-terminal epitope tags of these N-terminal deletion mutants were selectively surface-exposed. Fold-destabilizing C-terminal point mutations and deletions did not block OspA secretion, but rather restored one of the otherwise periplasmic tether mutants to the bacterial surface. Together, these data indicate that disturbance of a confined tether feature leads to premature folding of OspA in the periplasm and thereby prevents secretion through the outer membrane. Furthermore, they suggest that OspA emerges tail-first on the bacterial surface, yet independent of a specific C-terminal targeting peptide sequence.

Citing Articles

A Borrelia burgdorferi LptD homolog is required for flipping of surface lipoproteins through the spirochetal outer membrane.

He H, Pramanik A, Swanson S, Johnson D, Florens L, Zuckert W Mol Microbiol. 2023; 119(6):752-767.

PMID: 37170643 PMC: 10330739. DOI: 10.1111/mmi.15072.


Visualization of Spirochetes by Labeling Membrane Proteins With Fluorescent Biarsenical Dyes.

Hillman C, Stewart P, Strnad M, Stone H, Starr T, Carmody A Front Cell Infect Microbiol. 2019; 9:287.

PMID: 31482073 PMC: 6710359. DOI: 10.3389/fcimb.2019.00287.


Protein Secretion in Spirochetes.

Zuckert W Microbiol Spectr. 2019; 7(3).

PMID: 31198130 PMC: 6579041. DOI: 10.1128/microbiolspec.PSIB-0026-2019.


Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete Borrelia burgdorferi.

Takacs C, Kloos Z, Scott M, Rosa P, Jacobs-Wagner C Appl Environ Microbiol. 2018; 84(24).

PMID: 30315081 PMC: 6275353. DOI: 10.1128/AEM.01824-18.


Genetic Manipulation of Borrelia Spp.

Drecktrah D, Samuels D Curr Top Microbiol Immunol. 2017; 415:113-140.

PMID: 28918538 PMC: 5857249. DOI: 10.1007/82_2017_51.


References
1.
Potterton E, McNicholas S, Krissinel E, Cowtan K, Noble M . The CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr. 2002; 58(Pt 11):1955-7. DOI: 10.1107/s0907444902015391. View

2.
Zuckert W, Meyer J, Barbour A . Comparative analysis and immunological characterization of the Borrelia Bdr protein family. Infect Immun. 1999; 67(7):3257-66. PMC: 116504. DOI: 10.1128/IAI.67.7.3257-3266.1999. View

3.
Stewart P, Thalken R, Bono J, Rosa P . Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol. 2001; 39(3):714-21. DOI: 10.1046/j.1365-2958.2001.02256.x. View

4.
Golovanov A, Balasingham S, Tzitzilonis C, Goult B, Lian L, Homberset H . The solution structure of a domain from the Neisseria meningitidis lipoprotein PilP reveals a new beta-sandwich fold. J Mol Biol. 2006; 364(2):186-95. DOI: 10.1016/j.jmb.2006.08.078. View

5.
Jewett M, Byram R, Bestor A, Tilly K, Lawrence K, Burtnick M . Genetic basis for retention of a critical virulence plasmid of Borrelia burgdorferi. Mol Microbiol. 2007; 66(4):975-90. PMC: 2229028. DOI: 10.1111/j.1365-2958.2007.05969.x. View