» Articles » PMID: 20395957

New Cdc2 Tyr 4 Phosphorylation by DsRNA-activated Protein Kinase Triggers Cdc2 Polyubiquitination and G2 Arrest Under Genotoxic Stresses

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2010 Apr 17
PMID 20395957
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Cell division cycle 2 (Cdc2) protein is an essential subunit of M-phase kinase (MPK), which has a key role in G2/M transition. Even though the control of MPK activity has been well established with regard to the phosphorylation of Cdc2 at Thr 14 and/or Tyr 15 and Thr 161, little is known about the proteolytic control of Cdc2. In this study, we observed that Cdc2 was downregulated under genotoxic stresses and that double-stranded RNA-activated protein kinase (PKR) was involved in the process. The PKR-mediated Tyr4 phosphorylation triggered Cdc2 ubiquitination. Phospho-mimic mutations at the Tyr 4 residue (Y4D or Y4E) caused significant ubiquitination of Cdc2 even in the absence of PKR. Our findings demonstrate that (i) PKR, Ser/Thr kinase, phosphorylates its new substrate Cdc2 at the Tyr 4 residue, (ii) PKR-mediated Tyr 4-phosphorylation facilitates Cdc2 ubiquitination and proteosomal degradation, (iii) unphosphorylated Tyr 4 prevents Cdc2 ubiquitination, and (iv) downstream from p53, PKR has a crucial role in G2 arrest and triggers Cdc2 downregulation under genotoxic conditions.

Citing Articles

The antitumor peptide M1-20 induced the degradation of CDK1 through CUL4-DDB1-DCAF1-involved ubiquitination.

Bu H, Pei C, Ouyang M, Chen Y, Yu L, Huang X Cancer Gene Ther. 2024; 32(1):61-70.

PMID: 39562696 DOI: 10.1038/s41417-024-00855-8.


Targeting CDK1 in cancer: mechanisms and implications.

Wang Q, Bode A, Zhang T NPJ Precis Oncol. 2023; 7(1):58.

PMID: 37311884 PMC: 10264400. DOI: 10.1038/s41698-023-00407-7.


Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome.

Rangwala A, Mingione V, Georghiou G, Seeliger M Biomolecules. 2022; 12(5).

PMID: 35625613 PMC: 9138534. DOI: 10.3390/biom12050685.


GPS 5.0: An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins.

Wang C, Xu H, Lin S, Deng W, Zhou J, Zhang Y Genomics Proteomics Bioinformatics. 2020; 18(1):72-80.

PMID: 32200042 PMC: 7393560. DOI: 10.1016/j.gpb.2020.01.001.


PKR: A Kinase to Remember.

Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K Front Mol Neurosci. 2019; 11:480.

PMID: 30686999 PMC: 6333748. DOI: 10.3389/fnmol.2018.00480.


References
1.
Dagon Y, Dovrat S, Vilchik S, Hacohen D, Shlomo G, Sredni B . Double-stranded RNA-dependent protein kinase, PKR, down-regulates CDC2/cyclin B1 and induces apoptosis in non-transformed but not in v-mos transformed cells. Oncogene. 2002; 20(56):8045-56. DOI: 10.1038/sj.onc.1204945. View

2.
Yoon C, Lee E, Lim D, Bae Y . PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. Proc Natl Acad Sci U S A. 2009; 106(19):7852-7. PMC: 2683089. DOI: 10.1073/pnas.0812148106. View

3.
Lee E, Lee M, Camus S, Ghim J, Yang M, Oh W . Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. EMBO J. 2009; 28(14):2100-13. PMC: 2718286. DOI: 10.1038/emboj.2009.164. View

4.
Baltzis D, Pluquet O, Papadakis A, Kazemi S, Qu L, Koromilas A . The eIF2alpha kinases PERK and PKR activate glycogen synthase kinase 3 to promote the proteasomal degradation of p53. J Biol Chem. 2007; 282(43):31675-87. DOI: 10.1074/jbc.M704491200. View

5.
Raven J, Baltzis D, Wang S, Mounir Z, Papadakis A, Gao H . PKR and PKR-like endoplasmic reticulum kinase induce the proteasome-dependent degradation of cyclin D1 via a mechanism requiring eukaryotic initiation factor 2alpha phosphorylation. J Biol Chem. 2007; 283(6):3097-3108. DOI: 10.1074/jbc.M709677200. View