» Articles » PMID: 20393580

A Functional Metagenomic Approach for Expanding the Synthetic Biology Toolbox for Biomass Conversion

Overview
Journal Mol Syst Biol
Specialty Molecular Biology
Date 2010 Apr 16
PMID 20393580
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Sustainable biofuel alternatives to fossil fuel energy are hampered by recalcitrance and toxicity of biomass substrates to microbial biocatalysts. To address this issue, we present a culture-independent functional metagenomic platform for mining Nature's vast enzymatic reservoir and show its relevance to biomass conversion. We performed functional selections on 4.7 Gb of metagenomic fosmid libraries and show that genetic elements conferring tolerance toward seven important biomass inhibitors can be identified. We select two metagenomic fosmids that improve the growth of Escherichia coli by 5.7- and 6.9-fold in the presence of inhibitory concentrations of syringaldehyde and 2-furoic acid, respectively, and identify the individual genes responsible for these tolerance phenotypes. Finally, we combine the individual genes to create a three-gene construct that confers tolerance to mixtures of these important biomass inhibitors. This platform presents a route for expanding the repertoire of genetic elements available to synthetic biology and provides a starting point for efforts to engineer robust strains for biofuel generation.

Citing Articles

A Novel Efficient L-Lysine Exporter Identified by Functional Metagenomics.

Malla S, van der Helm E, Darbani B, Wieschalka S, Forster J, Borodina I Front Microbiol. 2022; 13:855736.

PMID: 35495724 PMC: 9048822. DOI: 10.3389/fmicb.2022.855736.


Engineering living therapeutics with synthetic biology.

Cubillos-Ruiz A, Guo T, Sokolovska A, Miller P, Collins J, Lu T Nat Rev Drug Discov. 2021; 20(12):941-960.

PMID: 34616030 DOI: 10.1038/s41573-021-00285-3.


Mosaic Ends Tagmentation (METa) Assembly for Highly Efficient Construction of Functional Metagenomic Libraries.

Crofts T, McFarland A, Hartmann E mSystems. 2021; :e0052421.

PMID: 34184912 PMC: 8269240. DOI: 10.1128/mSystems.00524-21.


Microbiome assembly for sulfonamide subsistence and the transfer of genetic determinants.

Deng Y, Huang Y, Che Y, Yang Y, Yin X, Yan A ISME J. 2021; 15(10):2817-2829.

PMID: 33820946 PMC: 8443634. DOI: 10.1038/s41396-021-00969-z.


Role of metagenomics in prospecting novel endoglucanases, accentuating functional metagenomics approach in second-generation biofuel production: a review.

Pabbathi N, Velidandi A, Tavarna T, Gupta S, Raj R, Gandam P Biomass Convers Biorefin. 2021; 13(2):1371-1398.

PMID: 33437563 PMC: 7790359. DOI: 10.1007/s13399-020-01186-y.


References
1.
Searchinger T, Heimlich R, Houghton R, Dong F, Elobeid A, Fabiosa J . Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science. 2008; 319(5867):1238-40. DOI: 10.1126/science.1151861. View

2.
Torsvik V, Daae F, Sandaa R, Ovreas L . Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol. 1998; 64(1):53-62. DOI: 10.1016/s0168-1656(98)00103-5. View

3.
Herring C, Raghunathan A, Honisch C, Patel T, Applebee M, Joyce A . Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet. 2006; 38(12):1406-12. DOI: 10.1038/ng1906. View

4.
Daniel R . The metagenomics of soil. Nat Rev Microbiol. 2005; 3(6):470-8. DOI: 10.1038/nrmicro1160. View

5.
Klinke H, Thomsen A, Ahring B . Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004; 66(1):10-26. DOI: 10.1007/s00253-004-1642-2. View