» Articles » PMID: 20384625

Permutation and Parametric Bootstrap Tests for Gene-gene and Gene-environment Interactions

Overview
Journal Ann Hum Genet
Date 2010 Apr 14
PMID 20384625
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Permutation tests are widely used in genomic research as a straightforward way to obtain reliable statistical inference without making strong distributional assumptions. However, in this paper we show that in genetic association studies it is not typically possible to construct exact permutation tests of gene-gene or gene-environment interaction hypotheses. We describe an alternative to the permutation approach in testing for interaction, a parametric bootstrap approach. Using simulations, we compare the finite-sample properties of a few often-used permutation tests and the parametric bootstrap. We consider interactions of an exposure with single and multiple polymorphisms. Finally, we address when permutation tests of interaction will be approximately valid in large samples for specific test statistics.

Citing Articles

Contemporary prognostic signatures and refined risk stratification of gliomas: An analysis of 4400 tumors.

Ghosh H, Patel R, Woodward E, Greenwald N, Bhave V, Maury E Neuro Oncol. 2024; 27(1):195-208.

PMID: 39164213 PMC: 11726335. DOI: 10.1093/neuonc/noae164.


Admixture mapping identifies novel Alzheimer's disease risk regions in African Americans.

Rajabli F, Tosto G, Hamilton-Nelson K, Kunkle B, Vardarajan B, Naj A Alzheimers Dement. 2022; 19(6):2538-2548.

PMID: 36539198 PMC: 10272044. DOI: 10.1002/alz.12865.


Gene-gene interaction detection with deep learning.

Cui T, El Mekkaoui K, Reinvall J, Havulinna A, Marttinen P, Kaski S Commun Biol. 2022; 5(1):1238.

PMID: 36371468 PMC: 9653457. DOI: 10.1038/s42003-022-04186-y.


A Cross-validated Ensemble Approach to Robust Hypothesis Testing of Continuous Nonlinear Interactions: Application to Nutrition-Environment Studies.

Liu J, Deng W, Lee J, Lin P, Valeri L, Christiani D J Am Stat Assoc. 2022; 117(538):561-573.

PMID: 36310839 PMC: 9611147. DOI: 10.1080/01621459.2021.1962889.


fdrci: FDR confidence interval selection and adjustment for large-scale hypothesis testing.

Millstein J, Battaglin F, Arai H, Zhang W, Jayachandran P, Soni S Bioinform Adv. 2022; 2(1):vbac047.

PMID: 35747247 PMC: 9210923. DOI: 10.1093/bioadv/vbac047.


References
1.
Rana B, Insel P, Payne S, Abel K, Beutler E, Ziegler M . Population-based sample reveals gene-gender interactions in blood pressure in White Americans. Hypertension. 2006; 49(1):96-106. DOI: 10.1161/01.HYP.0000252029.35106.67. View

2.
Ritchie M, Hahn L, Roodi N, BAILEY L, Dupont W, Parl F . Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001; 69(1):138-47. PMC: 1226028. DOI: 10.1086/321276. View

3.
Andrulionyte L, Kuulasmaa T, Chiasson J, Laakso M . Single nucleotide polymorphisms of the peroxisome proliferator-activated receptor-alpha gene (PPARA) influence the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes. 2007; 56(4):1181-6. DOI: 10.2337/db06-1110. View

4.
Mukherjee B, Chatterjee N . Exploiting gene-environment independence for analysis of case-control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics. 2007; 64(3):685-694. DOI: 10.1111/j.1541-0420.2007.00953.x. View

5.
Hu Y, Li L, Seidelmann S, Timur A, Shen P, Driscoll D . Identification of association of common AGGF1 variants with susceptibility for Klippel-Trenaunay syndrome using the structure association program. Ann Hum Genet. 2008; 72(Pt 5):636-43. PMC: 2602961. DOI: 10.1111/j.1469-1809.2008.00458.x. View